Zeta functions for germs of meromorphic functions, and Newton diagrams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 M ay 1 99 7 Zeta - functions for germs of meromorphic functions and Newton diagrams

For a germ of a meromorphic function f = P Q , we offer notions of the mono-dromy operators at zero and at infinity. If the holomorphic functions P and Q are non-degenerated with respect to their Newton diagrams, we give an analogue of the formula of Varchenko for the zeta-functions of these monodromy operators. A polynomial f of (n + 1) complex variables of degree d determines a meromorphic fu...

متن کامل

Monodromy Zeta-functions of Deformations and Newton Diagrams

For a one-parameter deformation of an analytic complex function germ of several variables, there is defined its monodromy zeta-function. We give a Varchenko type formula for this zeta-function if the deformation is non-degenerate with respect to its Newton diagram.

متن کامل

Meromorphic Continuation of Dynamical Zeta Functions via Transfer Operators

We describe a general method to prove meromorphic continuation of dynamical zeta functions to the entire complex plane under the condition that the corresponding partition functions are given via a dynamical trace formula from a family of transfer operators. Further we give general conditions for the partition functions associated with general spin chains to be of this type and provide various ...

متن کامل

Monodromy zeta functions at infinity , Newton polyhedra and

By using sheaf-theoretical methods such as constructible sheaves, we generalize the formula of Libgober-Sperber [17] concerning the zeta functions of monodromy at infinity of polynomial maps into various directions. In particular, some formulas for the zeta functions of global monodromy along the fibers of bifurcation points of polynomial maps will be obtained.

متن کامل

Local Zeta Functions Supported on Analytic Submanifolds and Newton Polyhedra

The local zeta functions (also called Igusa’s zeta functions) over p-adic fields are connected with the number of solutions of congruences and exponential sums mod pm. These zeta functions are defined as integrals over open and compact subsets with respect to the Haar measure. In this paper, we introduce new integrals defined over submanifolds, or more generally, over non-degenerate complete in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functional Analysis and Its Applications

سال: 1998

ISSN: 0016-2663,1573-8485

DOI: 10.1007/bf02482595