Selectivity in Quaternion Algebras

نویسنده

  • Benjamin Linowitz
چکیده

Let A be a quaternion algebra over a number field K and assume that A satisfies the Eichler condition; that is, there exists an archimedean prime of K which does not ramify in A. Let Ω be a commutative, quadratic OK-order and let R ⊂ A be an order. We determine the isomorphism classes in the genus of R which admit an embedding of Ω. In particular, we show that the proportion of the genus of R admitting an embedding of Ω is either 0, 1/2 or 1. Additionally, conditions are developed which determine the orders Ω which can be embedded into an order in the genus of R in the case that R is locally a primitive order or an Eichler order at every finite non-dyadic prime of K. These results generalize work of Chinburg and Friedman (in which only maximal orders were considered) and Guo and Qin (in which only Eichler orders were considered).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Liftings of Reduction Maps for Quaternion Algebras

We construct liftings of reduction maps from CM points to supersingular points for general quaternion algebras and use these liftings to establish a precise correspondence between CM points on indefinite quaternion algebras with a given conductor and CM points on certain corresponding totally definite quaternion algebras.

متن کامل

Hodge-theoretic obstruction to the existence of quaternion algebras

This paper gives a necessary criterion in terms of Hodge theory for representability by quaternion algebras of certain 2-torsion classes in the unramified Brauer group of a complex function field. This criterion is used to give examples of threefolds with unramified Brauer group elements which are the classes of biquaternion division algebras. DOI: https://doi.org/10.1112/S0024609302001546 Post...

متن کامل

On quaternionic functional analysis

In this article, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B∗-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C∗-algebras respectively. We will also give a Riesz representation theorem for quaternion...

متن کامل

Identifying the Matrix Ring: Algorithms for Quaternion Algebras and Quadratic Forms

We discuss the relationship between quaternion algebras and quadratic forms with a focus on computational aspects. Our basic motivating problem is to determine if a given algebra of rank 4 over a commutative ring R embeds in the 2 × 2-matrix ring M2(R) and, if so, to compute such an embedding. We discuss many variants of this problem, including algorithmic recognition of quaternion algebras amo...

متن کامل

Constructions of Orthonormal Lattices and Quaternion Division Algebras for Totally Real Number Fields

We describe some constructions of orthonormal lattices in totally real subfields of cyclotomic fields, obtained by endowing their ring of integers with a trace form. We also describe constructions of quaternion division algebras over such fields. Orthonormal lattices and quaternion division algebras over totally real fields find use in wireless networks in ultra wideband communication, and we d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009