Compilation and Synthesisfor Fault-Tolerant Digital Microfluidic Biochips
نویسنده
چکیده
Microfluidic-based biochips are replacing the conventional biochemical analyzers, by integrating all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips (DMBs) manipulate discrete amounts of fluids of nanoliter volume, named droplets, on an array of electrodes to perform operations such as dispensing, transport, mixing, split, dilution and detection. Researchers have proposed compilation approaches, which, starting from a biochemical application and a biochip architecture, determine the allocation, resource binding, scheduling, placement and routing of the operations in the application. During the execution of a bioassay, operations could experience transient faults, thus impacting negatively the correctness of the application. We have proposed both offline (design time) and online (runtime) recovery strategies. The online recovery strategy decides the introduction of the redundancy required for fault-tolerance. We consider both time redundancy, i.e., re-executing erroneous operations, and space redundancy, i.e., creating redundant droplets for fault-tolerance. Error recovery is performed such that the number of transient faults tolerated is maximized and the timing constraints of the biochemical application are satisfied. Previous work has assumed that the biochip architecture is given, and most approaches consider a rectangular shape for the electrode array, where operations execute on rectangular " modules " formed of electrodes. However, non-regular application-specific architectures are common in practice. Hence, we have proposed an approach to the synthesis of application-specific architectures, such that the cost is minimized and the timing constraints of the application are satisfied. ii We propose an algorithm to build a library of non-regular modules for a given application-specific architecture, so that the area of a non-regular application-specific biochip can be used effectively. During fabrication, DMBs can be affected by permanent faults, which may lead to the failure of the application. Our approach introduces redundant electrodes to synthesize fault-tolerant architectures aiming at increasing the yield of DMBs. We also propose a method to estimate, at design time, the application completion time in case of permanent faults in order to verify if an application can be successfully run on the architecture. The proposed approaches were evaluated using several real-life case studies and synthetic benchmarks. Resumé Mikrofluidiske biochips erstatter i stigende grad konventionelle biokemiske analyser ved at integrere alle nødvendige operationer i den biokemiske analyse på en enkelt biochip. Digitale Mikrofluidiske Biochips (DMBs) manipulerer små diskrete maengder Den udviklingsmetode er blevet evalueret på adskillige virkelige case-studier og syn-tetiske benchmarks. in fulfillment of the requirements for acquiring the Ph.D. degree in computer …
منابع مشابه
Fault Tolerant DNA Computing Based on Digital Microfluidic Biochips
Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...
متن کاملTestable Design of a Heterogeneous SoC for Biomedical Applications
Microfluidic biochips are becoming more and more popular in biomedical laboratory and also industry. Different from the continuous-flow microfluidic systems, a new generation of microfluidic biochips, referred to as digital microfluidic chips, has evolved over time and it offers advantages such as on-line reconfiguration and fault-tolerant operation. The principles behind the digital microfluid...
متن کاملTesting bio-chips
Dependability is an essential attribute for microfluidic biochips that are being developed for safety-critical applications such as point-of-care health assessment, air-quality monitoring, and food-safety testing. Therefore, these devices must be adequately tested after manufacture and during bioassay operations. This paper describes testing and diagnosis techniques for droplet-based "digital" ...
متن کاملReconfiguration Techniques for Digital Microfluidic Biochips
As digital microfluidic biochips become widespread in safety-critical biochemical applications, system dependability emerges as a critical performance parameter. The dynamic reconfigurability inherent in digital microfluidic biochips can be utilized to bypass faulty cells, thereby supporting defect/fault tolerance. In this paper, we propose three different reconfiguration techniques and the cor...
متن کاملDesign of Fault-Tolerant Digital Microfluidics-based Biochips
1. Abstract In the previous two checkpoints, we illustrated the effectiveness of our proposed approaches for error detection. There are two main goals for this checkpoint. One is to investigate and brainstorm the method for a fault-tolerant design; the other being to reduce the time complexity of our binary search. Concurrent alternatives primarily focused on two concepts: module placement and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014