Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning

نویسندگان

  • Can Karakus
  • Yifan Sun
  • Suhas Diggavi
  • Wotao Yin
چکیده

Performance of distributed optimization and learning systems is bottlenecked by “straggler” nodes and slow communication links, which significantly delay computation. We propose a distributed optimization framework where the dataset is “encoded” to have an over-complete representation with built-in redundancy, and the straggling nodes in the system are dynamically left out of the computation at every iteration, whose loss is compensated by the embedded redundancy. We show that oblivious application of several popular optimization algorithms on encoded data, including gradient descent, L-BFGS, proximal gradient under data parallelism, and coordinate descent under model parallelism, converge to either approximate or exact solutions of the original problem when stragglers are treated as erasures. These convergence results are deterministic, i.e., they establish sample path convergence for arbitrary sequences of delay patterns or distributions on the nodes, and are independent of the tail behavior of the delay distribution. We demonstrate that equiangular tight frames have desirable properties as encoding matrices, and propose efficient mechanisms for encoding large-scale data. We implement the proposed technique on Amazon EC2 clusters, and demonstrate its performance over several learning problems, including matrix factorization, LASSO, ridge regression and logistic regression, and compare the proposed method with uncoded, asynchronous, and data replication strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Straggler Mitigation in Distributed Optimization Through Data Encoding

Slow running or straggler tasks can significantly reduce computation speed in distributed computation. Recently, coding-theory-inspired approaches have been applied to mitigate the effect of straggling, through embedding redundancy in certain linear computational steps of the optimization algorithm, thus completing the computation without waiting for the stragglers. In this paper, we propose an...

متن کامل

Multi-Task Learning for Straggler Avoiding Predictive Job Scheduling

Parallel processing frameworks (Dean and Ghemawat, 2004) accelerate jobs by breaking them into tasks that execute in parallel. However, slow running or straggler tasks can run up to 8 times slower than the median task on a production cluster (Ananthanarayanan et al., 2013), leading to delayed job completion and inefficient use of resources. Existing straggler mitigation techniques wait to detec...

متن کامل

Near-Optimal Straggler Mitigation for Distributed Gradient Methods

Modern learning algorithms use gradient descent updates to train inferential models that best explain data. Scaling these approaches to massive data sizes requires proper distributed gradient descent schemes where distributed worker nodes compute partial gradients based on their partial and local data sets, and send the results to a master node where all the computations are aggregated into a f...

متن کامل

Reliability Optimization for Complicated Systems with a Choice of Redundancy Strategies (TECHNICAL NOTE)

Redundancy allocation is one of the common techniques to increase the reliability of the bridge systems. Many studies on the general redundancy allocation problems assume that the redundancy strategy for each subsystem is predetermined and fixed. In general, active redundancy has received more attention in the past. However, in real world, a particular system design contains both active and col...

متن کامل

Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding

We consider the problem of massive matrix multiplication, which underlies many data analytic applications, in a large-scale distributed system comprising a group of worker nodes. We target the stragglers’ delay performance bottleneck, which is due to the unpredictable latency in waiting for slowest nodes (or stragglers) to finish their tasks. We propose a novel coding strategy, named entangled ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018