Motion Segmentation via Global and Local Sparse Subspace Optimization

نویسندگان

  • Michael Ying Yang
  • Hanno Ackermann
  • Weiyao Lin
  • Sitong Feng
  • Bodo Rosenhahn
چکیده

In this paper, we propose a new framework for segmenting feature-based moving objects under affine subspace model. Since the feature trajectories in practice are highdimensional and contain a lot of noise, we firstly apply the sparse PCA to represent the original trajectories with a lowdimensional global subspace, which consists of the orthogonal sparse principal vectors. Subsequently, the local subspace separation will be achieved via automatically searching the sparse representation of the nearest neighbors for each projected data. In order to refine the local subspace estimation result and deal with the missing data problem, we propose an error estimation to encourage the projected data that span a same local subspace to be clustered together. In the end, the segmentation of different motions is achieved through the spectral clustering on an affinity matrix, which is constructed with both the error estimation and sparse neighbors optimization. We test our method extensively and compare it with state-of-the-art methods on the Hopkins 155 dataset and Freiburg-Berkeley Motion Segmentation dataset. The results show that our method is comparable with the other motion segmentation methods, and in many cases exceed them in terms of precision and computation time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Optimization for Motion Segmentation

In this paper, we propose a new framework for segmenting feature-based multiple moving objects with subspace models in affine views. Since the feature data is high-dimensional and complex in the real video sequences, most traditional approaches for motion segmentation use the conventional PCA to obtain a low-dimensional representation, while our proposed framework applies the sparse PCA (SPCA) ...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Segmentation-Based Motion with Occlusions Using Graph-Cut Optimization

We propose to tackle the optical flow problem by a combination of two recent advances in the computation of dense correspondences, namely the incorporation of image segmentation and robust global optimization via graph-cuts. In the first step, each segment (extracted by colour segmentation) is assigned to an affine motion model from a set of sparse correspondences. Using a layered model, we the...

متن کامل

Subspace Clustering Reloaded: Sparse vs. Dense Representations

State-of-the-art methods for learning unions of subspaces from a collection of data leverage sparsity to form representations of each vector in the dataset with respect to the remaining vectors in the dataset. The resulting sparse representations can be used to form a subspace affinity matrix to cluster the data into their respective subspaces. While sparsity-driven methods for subspace cluster...

متن کامل

Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining

Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1701.06944  شماره 

صفحات  -

تاریخ انتشار 2017