Incremental Clustering for Trajectories
نویسندگان
چکیده
Trajectory clustering has played a crucial role in data analysis since it reveals underlying trends of moving objects. Due to their sequential nature, trajectory data are often received incrementally, e.g., continuous new points reported by GPS system. However, since existing trajectory clustering algorithms are developed for static datasets, they are not suitable for incremental clustering with the following two requirements. First, clustering should be processed efficiently since it can be frequently requested. Second, huge amounts of trajectory data must be accommodated, as they will accumulate constantly. An incremental clustering framework for trajectories is proposed in this paper. It contains two parts: online micro-cluster maintenance and offline macro-cluster creation. For online part, when a new bunch of trajectories arrives, each trajectory is simplified into a set of directed line segments in order to find clusters of trajectory subparts. Micro-clusters are used to store compact summaries of similar trajectory line segments, which take much smaller space than raw trajectories. When new data are added, micro-clusters are updated incrementally to reflect the changes. For offline part, when a user requests to see current clustering result, macro-clustering is performed on the set of micro-clusters rather than on all trajectories over the whole time span. Since the number of micro-clusters is smaller than that of original trajectories, macro-clusters are generated efficiently to show clustering result of trajectories. Experimental results on both synthetic and real data sets show that our framework achieves high efficiency as well as high clustering quality.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملAn Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering
Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملMeasuring the Similarity of Trajectories Using Fuzzy Theory
In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...
متن کاملInterpreting map usage patterns using geovisual analytics and spatio-temporal clustering
Extracting meaningful information from the growing quantity of spatial data is a challenge. The issues are particularly evident with spatial temporal data describing movement. Such data typically corresponds to movement of humans, animals and machines in the physical environment. This article considers a special form of movement data generated through human-computer interactions with online web...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010