Maximin Action Identification: A New Bandit Framework for Games

نویسندگان

  • Aurélien Garivier
  • Emilie Kaufmann
  • Wouter M. Koolen
چکیده

We study an original problem of pure exploration in a strategic bandit model motivated by Monte Carlo Tree Search. It consists in identifying the best action in a game, when the player may sample random outcomes of sequentially chosen pairs of actions. We propose two strategies for the fixed-confidence setting: Maximin-LUCB, based on lowerand upperconfidence bounds; and Maximin-Racing, which operates by successively eliminating the sub-optimal actions. We discuss the sample complexity of both methods and compare their performance empirically. We sketch a lower bound analysis, and possible connections to an optimal algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thompson Sampling for Monte Carlo Tree Search and Maxi-min Action Identification

The Multi-Armed Bandit(MAB) problem is named after slot machine games. When playing slot machines, one player has to decide which machine to play, in which order to play them and how many times to play each machine. After the choice, that specific machine will offer a random reward from a probability distribution, and the player’s target is to maximize the sum of rewards earned through a sequen...

متن کامل

Multi-scale exploration of convex functions and bandit convex optimization

We construct a new map from a convex function to a distribution on its domain, with the property that this distribution is a multi-scale exploration of the function. We use this map to solve a decadeold open problem in adversarial bandit convex optimization by showing that the minimax regret for this problem is Õ(poly(n) √ T ), where n is the dimension and T the number of rounds. This bound is ...

متن کامل

A Drifting-Games Analysis for Online Learning and Applications to Boosting

We provide a general mechanism to design online learning algorithms based on a minimax analysis within a drifting-games framework. Different online learning settings (Hedge, multi-armed bandit problems and online convex optimization) are studied by converting into various kinds of drifting games. The original minimax analysis for drifting games is then used and generalized by applying a series ...

متن کامل

The Combinatorial Multi-Armed Bandit Problem and Its Application to Real-Time Strategy Games

Game tree search in games with large branching factors is a notoriously hard problem. In this paper, we address this problem with a new sampling strategy for Monte Carlo Tree Search (MCTS) algorithms, called Naı̈ve Sampling, based on a variant of the Multi-armed Bandit problem called the Combinatorial Multi-armed Bandit (CMAB) problem. We present a new MCTS algorithm based on Naı̈ve Sampling call...

متن کامل

Learning to take risks

Agents that learn about other agents and can exploit this information possess a distinct advantage in competitive situations. Games provide stylized adversarial environments to study agent learning strategies. Researchers have developed game playing programs that learn to play better from experience. We have developed a learning program that does not learn to play better, but learns to identify...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016