Feature Extraction Languages and Visual Pattern Recognition

نویسندگان

  • Mehran Maghoumi
  • Brian J. Ross
چکیده

Visual pattern recognition and classification is a challenging computer vision problem. Genetic programming has been applied towards automatic visual pattern recognition. An important factor in evolving effective classifiers is the suitability of the GP language for defining expressions for feature extraction and classification. This research presents a comparative study of a variety of GP languages suitable for classification. Four different languages are examined, which use different selections of image processing operators. One of the languages does block classification, which means that an entire region of pixels is classified simultaneously. The other languages are pixel classifiers, which determine classification for a single pixel. Pixel classifiers are more common in the GP-vision literature. We tested the languages on different instances of Brodatz textures, as well as aerial and camera images. Our results show that the most effective languages are pixel-based ones with spatial operators. However, as is to be expected, the nature of the image will naturally determine the effectiveness of the language used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Comparative Analysis of Feature Extraction Capabilities between Machine and Human in Visual Pattern Recognition Tasks Utilizing a Pattern Classification Framework

There have been many recent advances in pattern recognition technologies, particularly those involving visual pattern recognition tasks. How do these machine capabilities compare to human capabilities in visual pattern recognition tasks? Which can perform better in the feature extraction processes, machine or human? This study compares machine and human in color and shape recognition tasks, as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014