Trace Construction of a Basis for the Solution Space of slN qKZ Equation

نویسنده

  • Atsushi Nakayashiki
چکیده

The trace of intertwining operators over the level one irreducible highest weight modules of the quantum affine algebra of type AN−1 is studied. It is proved that the trace function gives a basis of the solution space of the qKZ equation at a generic level. The highest-highest matrix element of the composition of intertwining operators is explicitly calculated. The integral formula for the trace is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinant Formula for Solutions of the Uq(sln) qKZ Equation at |q | = 1

We construct the hypergeometric solutions for the quantized Knizhnik-Zamolodchikov equation with values in a tensor product of vector representations of Uq(sln) at |q| = 1 and give an explicit formula for the corresponding determinant in terms of the double sine function. Introduction In this paper we study the hypergeometric solutions of the quantized Knizhnik-Zamolodchikov (qKZ) equation with...

متن کامل

J un 1 99 9 Determinant Formula for Solutions of

We construct the hypergeometric solutions for the quantized Knizhnik-Zamolodchikov equation with values in a tensor product of vector representations of Uq(sln) at |q| = 1 and give an explicit formula for the corresponding determinant in terms of the double sine function. Introduction In this paper we study the hypergeometric solutions of the quantized Knizhnik-Zamolodchikov (qKZ) equation with...

متن کامل

A numerical solution of a Kawahara equation by using Multiquadric radial basis function

In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.

متن کامل

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation

In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994