Nanowastes and the environment: using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials.
نویسندگان
چکیده
Emerging nanotechnologies hold great promise for creating new means of detecting pollutants, cleaning polluted waste streams, and recovering materials before they become wastes, thereby protecting environmental quality. Studies focusing on the different advantages of nanoscience and nanotechnology abound in the literature, but less research effort seems to be directed toward studying the fate and potential impacts of wastes that will be generated by this technology. Using a combination of biogeochemical and toxicological methods, we conducted a preliminary investigation of the potential environmental fate of Hg as an example pollutant bound to nanomaterials used in treatment of gas effluents. Methylation of Hg sorbed onto SiO(2)-TiO(2) nanocomposites was used as a proxy for Hg bioavailability to sedimentary microorganisms, and the FluoroMetPLATE assay was used to assess the toxicity of both virgin and Hg-loaded SiO(2)-TiO(2) nanocomposites. Our results show that the bioavailability of Hg sorbed onto SiO(2)-TiO(2) nanocomposites to sedimentary microorganisms is pH dependent, with decreasing reaction rates as the pH increases from 4 to 6. Toxicity tests conducted using liquid extracts obtained by leaching of Hg-loaded SiO(2)-TiO(2) nanocomposites with the synthetic precipitation leaching procedure solution showed an average inhibition of 84% (vs 57% for virgin SiO(2)-TiO(2) nanocomposites). These results suggest that Hg sorbed onto engineered nanoparticles could become bioavailable and toxic if introduced into natural systems. Accordingly, studies focusing on the environmental implications of nanomaterials should include determination of the fate and impacts of pollutants that enter the environment bound to engineered nanomaterials.
منابع مشابه
Environmental Multimedia Modeling of Chemical Transport
Environmental management is becoming increasingly dependent on quantitative analysis of environmental and health risks associated with exposure to chemical contaminants. Exposure to chemical pollutants can occur via primary pathways (e.g., inhalation of polluted air or drinking contaminated water) and/or secondary pathways (e.g., ingestion of contaminated food) and therefore requires informatio...
متن کاملApplication of FFT Cyclic Voltammetry for Monitoring Removal of Mercury Ions from Aqueous Environment using New Adsorbent based Modified Mesoporous Silica (SBA–15)
As the electrochemical method, the Fast Fourier Transform (FFT) Stripping Cyclic Voltammetry detection method was designed for measurement and monitoring of adsorbed mercury ions by new modified adsorbent based on mesoporous silica as a new adsorbent. In this respect, SBA-15 as mesoporous silica and 1, 3, 5 Trithiane as effective modifier ligand were chosen, and the modification process was car...
متن کاملNanotechnology risk assessment from a waste management perspective: are the current tools adequate?
The burgeoning nanotechnology industry is rapidly generating new forms of waste streams generically referred herein as nanowastes. However, little is known about the fate and behavior of these waste streams and their impacts thereof in different ecological systems despite their increasingly widespread dispersion into the environment through production, distribution, handling, and nanomaterials ...
متن کاملComparison of different kinetic models for adsorption of acid blue 62 as an environmental pollutant from aqueous solution onto mesoporous Silicate SBA-15 modified by Tannic acid
In this work, adsorption kinetics were investigated in order to remove the acid blue 62 off the aqueous solutions using mesoporous silicate SBA-15 loaded with tannic acid (tannin-SBA-15). Nitrogen adsorption and desorption test (BET), X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FT-IR) analysis characterize synthesized composite. The impacts of some parameters such as P...
متن کاملComparison of different kinetic models for adsorption of acid blue 62 as an environmental pollutant from aqueous solution onto mesoporous Silicate SBA-15 modified by Tannic acid
In this work, adsorption kinetics were investigated in order to remove the acid blue 62 off the aqueous solutions using mesoporous silicate SBA-15 loaded with tannic acid (tannin-SBA-15). Nitrogen adsorption and desorption test (BET), X-ray diffraction (XRD) and Fourier transform infra-red spectroscopy (FT-IR) analysis characterize synthesized composite. The impacts of some parameters such as P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology and chemistry
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2008