Group Actions on Spheres with Rank One Isotropy
نویسنده
چکیده
Let G be a rank two finite group, and let H denote the family of all rank one p-subgroups of G, for which rankp(G) = 2. We show that a rank two finite group G which satisfies certain group-theoretic conditions admits a finite G-CW-complex X ' S with isotropy in H, whose fixed sets are homotopy spheres.
منابع مشابه
Group Actions on Spheres with Rank One Prime Power Isotropy
We show that a rank two finite group G admits a finite G-CW-complex X ' S with rank one prime power isotropy if and only if G does not p′-involve Qd(p) for any odd prime p. This follows from a more general theorem which allows us to construct a finite G-CW-complex by gluing together a given G-invariant family of representations defined on the Sylow subgroups of G.
متن کاملFusion Systems and Constructing Free Actions on Products of Spheres
We show that every rank two p-group acts freely and smoothly on a product of two spheres. This follows from a more general construction: given a smooth action of a finite group G on a manifold M , we construct a smooth free action on M×S1×· · ·×Sk when the set of isotropy subgroups of the G-action on M can be associated to a fusion system satisfying certain properties. Another consequence of th...
متن کاملDifferentiable pseudo-free circle actions.
The circle group G is said to act pseudofreely if it is not free and if every orbit is one-dimensional and if the isotropy group is the identity except on isolated exceptional orbits where the isotropy group is the finite cyclic group Z(k), k > 1. We consider differentiable actions of this kind on homotopy seven spheres and classify all such actions. As a corollary, it follows that there can be...
متن کاملThe Equivariant Bundle Subtraction Theorem and its applications
In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem...
متن کاملA new notion of rank for finite supersolvable groups and free linear actions on products of spheres
For a finite supersolvable group G, we define the saw rank of G to be the minimum number of sections Gk − Gk−1 of a cyclic normal series G∗ such that Gk − Gk−1 owns an element of prime order. The axe rank of G, studied by Ray [10], is the minimum number of spheres in a product of spheres admitting a free linear action of G. Extending a question of Ray, we conjecture that the two ranks are equal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013