Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers.
نویسندگان
چکیده
Monolithic plugs of poly(N-isopropylacrylamide) cross-linked with 5% methylenebisacrylamide have been prepared by photoinitiated polymerization within the channel of a microfluidic device. The volume change associated with the polymer phase transition at its lower critical solution temperature of 32 degrees C allows both the rapid swelling and the deswelling of the monoliths enabling the polymer to close or open the channel as it functions as a nonmechanical valve. Thermoelectric elements capable of changing the temperature of the system between 17 and 57 degrees C were used to actuate the valve. Flow through the device was monitored by fluorescence measurements via the laser-triggered photobleaching of a dye contained in the liquid phase. Photobleaching occurs quickly once the flow is stopped, and the time required to open and close the valve was 3.5 and 5.0 s, respectively. No changes in function were observed even after 120 open-close cycles. Although the 2-mm-long valve was prepared from a polymerization mixture consisting of only a 5% aqueous solution of monomers, it resists pressures of up to 1.38 MPa (200 psi) without observable structural damage.
منابع مشابه
Monolithic valves for microfluidic chips based on thermoresponsive polymer gels.
The direct preparation of thermoresponsive monolithic copolymers by photopatterning of a liquid phase consisting of an aqueous solution of N-isopropylacrylamide, N-ethylacrylamide, N,N'-methylenebisacrylamide, and 4,4'-azobis(4-cyanovaleric acid) has been studied and the products used as valves within the channels of microfluidic devices. The volume change associated with the polymer phase tran...
متن کاملHigh-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
A facile method enabling the integration of elastomeric valves into rigid thermoplastic microfluidic chips is described. The valves employ discrete plugs of elastomeric polydimethylsiloxane (PDMS) integrated into the thermoplastic substrate and actuated using a threaded stainless steel needle. The fabrication process takes advantage of poly(ethylene glycol) (PEG) as a sacrificial molding materi...
متن کاملIntegrated on-chip mass spectrometry reaction monitoring in microfluidic devices containing porous polymer monolithic columns.
Chip-based microfluidics enable the seamless integration of different functions into single devices. Here, we present microfluidic chips containing porous polymer monolithic columns as a means to facilitate chemical transformations as well as both downstream chromatographic separation and mass spectrometric analysis. Rapid liquid phase lithography prototyping creates the multifunctional device ...
متن کاملHigh-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths.
We have developed a nonstick polymer formulation for creating moving parts inside of microfluidic channels and have applied the technique to create piston-based devices that overcome several microfluidic flow control challenges. The parts were created bycompletely filling the channels of a glass microfluidic chip with the monomer/ solvent/initiator components of a nonstick photopolymer and then...
متن کاملAutonomous microfluidics with stimuli-responsive hydrogels
There has been increasing interest in integrated microfluidic systems because performing biological and chemical laboratory tasks on a single chip is appealing. One straightforward approach to constructing these ‘lab on chips’ is to fabricate individual components and to assemble them for desired functionalities. As the functionalities of the microfluidic systems become increasingly complicated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 75 8 شماره
صفحات -
تاریخ انتشار 2003