A Sparse Texture Representation Using Affine-Invariant Regions

نویسندگان

  • Svetlana Lazebnik
  • Cordelia Schmid
  • Jean Ponce
چکیده

This paper introduces a texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and nonrigid deformations. At the feature extraction stage, a sparse set of affine-invariant local patches is extracted from the image. This spatial selection process permits the computation of characteristic scale and neighborhood shape for every texture element. The proposed texture representation is evaluated in retrieval and classification tasks using the entire Brodatz database and a collection of photographs of textured surfaces taken from different viewpoints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Texture Representation Using Affine-Invariant Neighborhoods

This paper proposes a novel texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and non-rigid deformations. Unlike many existing feature extraction methods, which treat the neighborhood of every pixel as a candidate texture element, the proposed algorithm works by selecting a sparse set of affine-invarian...

متن کامل

Affine invariant texture signatures

In this paper, we develop a new approach for texture classification independent of affine transforms. Based on spectral representation of texture images under affine transform, anisotropic scale invariant signatures of orientation spectrum distribution are extracted. Peaks distribution vector (PDV) obtained on the distribution of these signatures captures texture properties invariant to affine ...

متن کامل

Object Class Recognition Using Discriminative Local Features

In this paper, we introduce a scale-invariant feature selection method that learns to recognize and detect object classes from images of natural scenes. The first step of our method consists of clustering local scale-invariant descriptors to characterize object class appearance. Next, we train part classifiers on the groups, and perform feature selection to determine the most discriminative par...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Variation of SIFT Descriptor for Affine Invariant Object Matching

In this paper, a novel affine invariant descriptor for object matching is proposed. The advantage of Maximally Stable Extremal Regions (MSER) method is applied to get the most stable regions in the image. Inside each region, we pick the seeds as keypoints since MSER regions are invariant to affine transformation. Besides that, Voronoi diagram is employed to split the image into small Voronoi ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003