Ultra-Fast Optimal Pathfinding without Runtime Search
نویسنده
چکیده
Pathfinding is important in many applications, including games, robotics and GPS itinerary planning. In games, most pathfinding methods rely on runtime search. Despite numerous enhancements introduced in recent years, runtime search has the disadvantage that, in bad cases, most parts of a map need to be explored, causing a time performance degradation. In this work we explore a significantly different approach to pathfinding, eliminating the need for runtime search. Optimal paths between all pairs of locations are pre-computed. Since straightforward ways to store pre-computed paths are prohibitively expensive even for maps of moderate size, precomputed data are compressed, reducing the memory requirements dramatically. At runtime, pathfinding is very fast, as it requires visiting only the locations on an optimal path. In each location, a quick computation provides the next move along the optimal path. We demonstrate the effectiveness of this approach on Baldur’s Gate game maps. The compression factor reaches two orders of magnitude, bringing the memory requirements down to reasonable values. Compared to A* search, the runtime speedup reaches and even exceeds two orders of magnitude. When averaged over paths of similar cost, the speedup reaches a value of 700 in our experiments.
منابع مشابه
Fast, Optimal Pathfinding with Compressed Path Databases
Most existing pathfinding methods are based on runtime search. Numerous enhancements have been introduced in recent years, including hierarchical abstraction (Botea, Müller, and Schaeffer 2004; Sturtevant and Buro 2005), more informed heuristics (Björnsson and Halldórsson 2006; Cazenave 2006; Sturtevant et al. 2009), and symmetry reduction (Harabor and Botea 2010; Harabor and Grastien 2011). Re...
متن کامل3D Pathfinding and Collision Avoidance Using Uneven Search-space Quantization and Visual Cone Search
Pathfinding is a very popular area in computer game development. While two-dimensional (2D) pathfinding is widely applied in most of the popular game engines, little implementation of real three-dimensional (3D) pathfinding can be found. This research presents a dynamic search space optimization algorithm which can be applied to tessellate 3D search space unevenly, significantly reducing the to...
متن کاملCombining Bounding Boxes and JPS to Prune Grid Pathfinding
Pathfinding is a common task across many domains and platforms, whether in games, robotics, or road maps. Given the breadth of domains, there are also a wide variety of representations used for pathfinding, and there are many techniques which have been shown to improve performance. In the last few years, the state-of-the-art in grid-based pathfinding has been significantly improved with domain-...
متن کاملSuboptimal Variants of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem
The task in the multi-agent path finding problem (MAPF) is to find paths for multiple agents, each with a different start and goal position, such that agents do not collide. A successful optimal MAPF solver is the conflict-based search (CBS) algorithm. CBS is a two level algorithm where special conditions ensure it returns the optimal solution. Solving MAPF optimally is proven to be NP-hard, he...
متن کاملمسیریابی حرکت روباتهای ماشینواره با روش پیشروی سریع
The Robot Motion Planning (RMP) problem deals with finding a collision-free start-to-goal path for a robot navigating among workspace obstacles. Such a problem is also encountered in path planning of intelligent vehicles and Automatic Guided Vehicles (AGVs). In terms of kinematic constraints, the RMP problem can be categorized into two groups of Holonomic and Nonholonomic problems. In the first...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011