Improving the IBM Alignment Models Using Variational Bayes

نویسندگان

  • Darcey Riley
  • Daniel Gildea
چکیده

Bayesian approaches have been shown to reduce the amount of overfitting that occurs when running the EM algorithm, by placing prior probabilities on the model parameters. We apply one such Bayesian technique, variational Bayes, to the IBM models of word alignment for statistical machine translation. We show that using variational Bayes improves the performance of the widely used GIZA++ software, as well as improving the overall performance of the Moses machine translation system in terms of BLEU score.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of GIZA++ Using Variational Bayes

Bayesian approaches have been shown to reduce the amount of overfitting that occurs when running the EM algorithm, by placing prior probabilities on the model parameters. We apply one such Bayesian technique, variational Bayes, to GIZA++, a widely-used piece of software that computes word alignments for statistical machine translation. We show that using variational Bayes improves the performan...

متن کامل

Bayesian Sparsity for Intractable Distributions

Bayesian approaches for single-variable and group-structured sparsity outperform L1 regularization, but are challenging to apply to large, potentially intractable models. Here we show how noncentered parameterizations, a common trick for improving the efficiency of exact inference in hierarchical models, can similarly improve the accuracy of variational approximations. We develop this with two ...

متن کامل

Bayesian Learning of Non-Compositional Phrases with Synchronous Parsing

We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead to empirically effective results. Inc...

متن کامل

Bayesian Learning of Non-compositional Phrases with Synchronous Parsing

We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead to empirically effective results. Inc...

متن کامل

An Alternative View of Variational Bayes and Minimum Variational Stochastic Complexity

Bayesian learning is widely used in many applied datamodelling problems and is often accompanied with approximation schemes since it requires intractable computation of the posterior distributions. In this study, we focus on the two approximation methods, the variational Bayes and the local variational approximation. We show that the variational Bayes approach for statistical models with latent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012