Sufficient Optimality Conditions and Mond- Weir Duality for Quasidifferentiable Optimization Problems with Univex Functions
نویسندگان
چکیده
In the paper, a nonconvex quasidifferentiable optimization problem with the inequality constraints is considered. The concept of a univex function with respect to a convex compact set is introduced. Further, the sufficient optimality conditions and several duality results in the sense of Mond-Weir are established for the considered quasidifferentiable optimization problem under assumption that the functions constituting it are univex with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials.
منابع مشابه
Optimality and Duality for Multiple-Objective Optimization with Generalized α-Univex Functions
The aim of the present paper is to obtain a number of Kuhn-Tucker type sufficient optimality conditions for a feasible solution to be an efficient solution under the assumptions of the new notions of weak strictly pseudo quasi α-univex, strong pseudo quasi α-univex, and weak strictly pseudo α-univex vector valued functions. We also derive the duality theorems for Mond-Weir and general Mond-Wei...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملOPTIMALITY AND DUALITY FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS WITH n-SET FUNCTIONS AND GENERALIZED V -TYPE-I UNIVEXITY
Problems of multiobjective optimization are widespread in mathematical modelling of real world systems for a very broad range of applications. In particular, several classes of multiobjective problems with set and n-set functions have been the subject of several papers in the last few decades. For a historical survey of optimality conditions and duality for programming problems involving set an...
متن کاملNondifferentiable multiobjective programming under generalized dI-invexity
In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized convex functions by combining the concepts of weak strictly pseudoinvex, strong pseudoinvex, weak quasi invex, weak pseudoinvex and strong quasi invex functions in Aghezzaf and Hachimi [Numer. Funct. Anal. Optim. 22 (2001) 775], d-...
متن کاملSufficiency and Duality in Multiobjective Programming under Generalized Type I Functions
In this paper, new classes of generalized (F,α,ρ, d)-V -type I functions are introduced for differentiable multiobjective programming problems. Based upon these generalized convex functions, sufficient optimality conditions are established. Weak, strong and strict converse duality theorems are also derived for Wolfe and Mond-Weir type multiobjective dual programs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017