Kinase Inhibition Leads to Hormesis in a Dual Phosphorylation-Dephosphorylation Cycle
نویسندگان
چکیده
Many antimicrobial and anti-tumour drugs elicit hormetic responses characterised by low-dose stimulation and high-dose inhibition. While this can have profound consequences for human health, with low drug concentrations actually stimulating pathogen or tumour growth, the mechanistic understanding behind such responses is still lacking. We propose a novel, simple but general mechanism that could give rise to hormesis in systems where an inhibitor acts on an enzyme. At its core is one of the basic building blocks in intracellular signalling, the dual phosphorylation-dephosphorylation motif, found in diverse regulatory processes including control of cell proliferation and programmed cell death. Our analytically-derived conditions for observing hormesis provide clues as to why this mechanism has not been previously identified. Current mathematical models regularly make simplifying assumptions that lack empirical support but inadvertently preclude the observation of hormesis. In addition, due to the inherent population heterogeneities, the presence of hormesis is likely to be masked in empirical population-level studies. Therefore, examining hormetic responses at single-cell level coupled with improved mathematical models could substantially enhance detection and mechanistic understanding of hormesis.
منابع مشابه
Determination of Sialyl trnsferase activity and effect of Phosphorylation and dephosphorylation Mechanisms
Halakhor S1, Qujeq D2, Shikhpour R3 1. Instructor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 2. Associate professor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 3. GP, Babol, Iran Abstract Background: Previous reports show that phosphorylation anddepho...
متن کاملPhosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit.
In higher eukaryotic organisms, the checkpoint kinase 1 (Chk1) contributes essential functions to both cell cycle and checkpoint control. Chk1 executes these functions, in part, by targeting the Cdc25A protein phosphatase for ubiquitin-mediated proteolysis. In response to genotoxic stress, Chk1 is phosphorylated on serines 317 (S317) and 345 (S345) by the ataxia-telangiectasia-related (ATR) pro...
متن کاملCutting edge: selective tyrosine dephosphorylation of interferon-activated nuclear STAT5 by the VHR phosphatase.
Cytokine-induced tyrosine phosphorylation of the transcription factor STAT5 is required for its transcriptional activity. In this article we show that the small dual-specificity phosphatase VHR selectively dephosphorylates IFN-alpha- and beta-activated, tyrosine-phosphorylated STAT5, leading to the subsequent inhibition of STAT5 function. Phosphorylation of VHR at Tyr(138) was required for its ...
متن کاملPKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis
Many types of human tumour cells overexpress the dual-specificity phosphatase Cdc25A. Cdc25A dephosphorylates cyclin-dependent kinase and regulates the cell cycle, but other substrates of Cdc25A and their relevant cellular functions have yet to be identified. We demonstrate here that EGFR activation results in c-Src-mediated Cdc25A phosphorylation at Y59, which interacts with nuclear pyruvate k...
متن کاملIdentification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle.
A cluster of phosphorylation sites in LRRK2 (leucine-rich repeat kinase 2), including Ser910, Ser935, Ser955 and Ser973, is important for PD (Parkinson's disease) pathogenesis as several PD-linked LRRK2 mutants are dephosphorylated at these sites. LRRK2 is also dephosphorylated in cells after pharmacological inhibition of its kinase activity, which is currently proposed as a strategy for diseas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016