Protocell design through modular compartmentalization.
نویسندگان
چکیده
De novo synthetic biological design has the potential to significantly impact upon applications such as energy generation and nanofabrication. Current designs for constructing organisms from component parts are typically limited in scope, as they utilize a cut-and-paste ideology to create simple stepwise engineered protein-signalling pathways. We propose the addition of a new design element that segregates components into lipid-bound 'proto-organelles', which are interfaced with response elements and housed within a synthetic protocell. This design is inspired by living cells, which utilize multiple types of signalling molecules to facilitate communication between isolated compartments. This paper presents our design and validation of the components required for a simple multi-compartment protocell machine, for coupling a light transducer to a gene expression system. This represents a general design concept for the compartmentalization of different types of artificial cellular machinery and the utilization of non-protein signal molecules for signal transduction.
منابع مشابه
PREBIOTIC CHEMISTRY Rapid RNA Exchange in Aqueous Two-Phase System and Coacervate Droplets
Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane...
متن کاملSolvable model for template coexistence in protocells
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between t...
متن کاملCompartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network
Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and de...
متن کاملProtocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery.
Mesoporous silica nanoparticle-supported lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicle. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompa...
متن کاملCurrent Ideas about Prebiological Compartmentalization
Contemporary biological cells are highly sophisticated dynamic compartment systems which separate an internal volume from the external medium through a boundary, which controls, in complex ways, the exchange of matter and energy between the cell's interior and the environment. Since such compartmentalization is a fundamental principle of all forms of life, scenarios have been elaborated about t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 10 87 شماره
صفحات -
تاریخ انتشار 2013