Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce
نویسندگان
چکیده
Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.
منابع مشابه
Hadoop-GIS: A High Performance Spatial Query System for Analytical Medical Imaging with MapReduce
Querying and analyzing large volumes of spatially oriented scientific data becomes increasingly important for many applications. For example, analyzing high-resolution digital pathology images through computer algorithms provides rich spatially derived information of micro-anatomic objects of human tissues. The spatial oriented information and queries at both cellular and sub-cellular scales sh...
متن کاملAdaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملData Warehousing and Hadoop: A Critical Examination With Connections to Bioinformatics
The Data Warehousing field has been fundamentally changed by the Big Data revolution. Computational and storage methodologies such as Hadoop provide an alternate way of managing and analyzing the torrent of data that is flooding in from all manner of instrumentation. This review article will elucidate the relationship between traditional enterprise data warehousing and one of the primary analyt...
متن کاملA Context-Based Performance Enhancement Algorithm for Columnar Storage in MapReduce with Hive
To achieve high reliability and scalability, most large-scale data warehouse systems have adopted the clusterbased architecture. In this context, MapReduce has emerged as a promising architecture for large scale data warehousing and data analytics on commodity clusters. The MapReduce framework offers several lucrative features such as high fault-tolerance, scalability and use of a variety of ha...
متن کاملA Demonstration of SpatialHadoop: An Efficient MapReduce Framework for Spatial Data
This demo presents SpatialHadoop as the first full-fledged MapReduce framework with native support for spatial data. SpatialHadoop is a comprehensive extension to Hadoop that pushes spatial data inside the core functionality of Hadoop. SpatialHadoop runs existing Hadoop programs as is, yet, it achieves order(s) of magnitude better performance than Hadoop when dealing with spatial data. SpatialH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2013