On Necessary Conditions for Convergence of Stationary Iterative Methods for Hermitian Semidefinite Linear Systems
نویسندگان
چکیده
In an earlier paper [SIAM J. Matrix Anal. Appl. vol. 30 (2008), 925–938] we gave sufficient conditions in terms of an energy seminorm for the convergence of stationary iterations for solving linear systems whose coefficient matrix is Hermitian and positive semidefinite. In this paper we show in which cases these conditions are also necessary, and show that they are not necessary in others.
منابع مشابه
On Necessary Conditions for Convergence of Stationary Iterative Methods for Hermitian Definite and Semidefinite Linear Systems∗
In an earlier paper [SIAM J. Matrix Anal. Appl. vol. 30 (2008), 925–938] we gave sufficient conditions in terms of an energy seminorm for the convergence of stationary iterations for solving singular linear systems whose coefficient matrix is Hermitian and positive semidefinite. In this paper we show in which cases these conditions are also necessary, and show that they are not necesary in othe...
متن کاملConvergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices
For the non-Hermitian and positive semidefinite systems of linear equations, we derive sufficient and necessary conditions for guaranteeing the unconditional convergence of the preconditioned Hermitian and skew-Hermitian splitting iteration methods. These result is specifically applied to linear systems of block tridiagonal form to obtain convergence conditions for the corresponding block varia...
متن کاملConvergence of Two-Stage Iterative Methods for Hermitian Positive Definite Matrices
Two-stage iterative methods for the solution of linear systems are studied. Convergence of both stationary and nonstationary cases is analyzed when the coefficient matrix is Hermitian positive definite. Keywords—Linear systems, Hermitian matrices, Positive definite matrices, Iterative methods, Nonstationary methods, Two-stage methods.
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملConvergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014