Rc - Graphs and a Generalized Littlewood - Richardson Rule

نویسنده

  • MIKHAIL KOGAN
چکیده

Using a generalization of the Schensted insertion algorithm to rcgraphs, we provide a Littlewood-Richardson rule for multiplying certain Schubert polynomials by Schur polynomials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Littlewood-Richardson fillings and their symmetries

Abstract Considering the classical definition of the Littlewood-Richardson rule and its 2-dimensional representation by means of rectangular tableaux, we exhibit 24 symmetries of this rule when considering dualization, conjugation and their composition. Extending the Littlewood-Richardson rule to sequences of nonnegative real numbers, six of these symmetries may be generalized. Our point is to ...

متن کامل

Generalization of Schensted insertion algorithm to the cases of hooks and semi-shuffles

Given an rc-graph R of permutation w and an rc-graph Y of permutation v, we provide an insertion algorithm, which defines an rc-graph R ← Y in the case when v is a shuffle with the descent at r and w has no descents greater than r or in the case when v is a shuffle, whose shape is a hook. This algorithm gives a combinatorial rule for computing the generalized Littlewood-Richardson coefficients ...

متن کامل

Symmetric Skew Quasisymmetric Schur Functions

The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...

متن کامل

Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions

The classical Littlewood-Richardson rule is a rule for computing coefficients in many areas, and comes in many guises. In this paper we prove two Littlewood-Richardson rules for symmetric skew quasisymmetric Schur functions that are analogous to the famed version of the classical Littlewood-Richardson rule involving Yamanouchi words. Furthermore, both our rules contain this classical Littlewood...

متن کامل

A Geometric Littlewood-richardson Rule

We describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties so that they break into Schubert varieties. There are no restrictions on the base field, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri’s rule to arbitrary Schubert classes, by way of ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000