Globus pallidus neurons dynamically regulate the activity pattern of subthalamic nucleus neurons through the frequency-dependent activation of postsynaptic GABAA and GABAB receptors.
نویسندگان
چکیده
Reciprocally connected GABAergic neurons of the globus pallidus (GP) and glutamatergic neurons of the subthalamic nucleus (STN) are a putative generator of pathological rhythmic burst firing in Parkinson's disease (PD). Burst firing of STN neurons may be driven by rebound depolarization after barrages of GABA(A) receptor (GABA(A)R)-mediated IPSPs arising from pallidal fibers. To determine the conditions under which pallidosubthalamic transmission activates these and other postsynaptic GABARs, a parasagittal mouse brain slice preparation was developed in which pallidosubthalamic connections were preserved. Intact connectivity was first confirmed through the injection of a neuronal tracer into the GP. Voltage-clamp and gramicidin-based perforated-patch current-clamp recordings were then used to study the relative influences of GABA(A)R- and GABA(B)R-mediated pallidosubthalamic transmission on STN neurons. Spontaneous phasic, but not tonic, activation of postsynaptic GABA(A)Rs reduced the frequency and disrupted the rhythmicity of autonomous firing in STN neurons. However, postsynaptic GABA(B)Rs were only sufficiently activated to impact STN firing when pallidosubthalamic transmission was elevated or pallidal fibers were synchronously activated by electrical stimulation. In a subset of neurons, rebound burst depolarizations followed high-frequency, synchronous stimulation of pallidosubthalamic fibers. Although GABA(B)R-mediated hyperpolarization was itself sufficient to generate rebound bursts, coincident activation of postsynaptic GABA(A)Rs produced longer and more intense burst firing. These findings elucidate a novel route through which burst activity can be generated in the STN, and suggest that GABARs on STN neurons could act in a synergistic manner to generate abnormal burst activity in PD.
منابع مشابه
Heterosynaptic Regulation of External Globus Pallidus Inputs to the Subthalamic Nucleus by the Motor Cortex
The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease...
متن کاملDopaminergic Control of the Globus Pallidus through Activation of D2 Receptors and Its Impact on the Electrical Activity of Subthalamic Nucleus and Substantia Nigra Reticulata Neurons
The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2...
متن کاملPre- and postsynaptic serotoninergic excitation of globus pallidus neurons.
The basal ganglia (BG) play a critical role in the pathogenesis and pathophysiology of Parkinson's disease (PD). Recent studies indicate that serotoninergic systems modulate BG activity and may be implicated in the pathophysiology and treatment of PD. The globus pallidus (GP), the rodent homologue of the primate GPe, is the main central nucleus of the basal ganglia, affecting the striatum, the ...
متن کاملHigh and low frequency stimulation of the subthalamic nucleus induce prolonged changes in subthalamic and globus pallidus neurons
High frequency stimulation (HFS) of the subthalamic nucleus (STN) is widely used to treat the symptoms of Parkinson's disease (PD) but the mechanism of this therapy is unclear. Using a rat brain slice preparation maintaining the connectivity between the STN and one of its target nuclei, the globus pallidus (GP), we investigated the effects of high and low frequency stimulation (LFS) (HFS 100 Hz...
متن کاملEffect of GABAA Receptors in the Rostral Ventrolateral Medulla on Cardiovascular Response to the Activation of the Bed Nucleus of the Stria Terminalis in Female Ovariectomized Rats
Background: The areas of the bed nucleus of the stria terminalis (BST) with a high density of estrogen receptors are involved in cardiovascular regulation and send axonal projections to the rostroventrolateral medulla (RVLM). We aimed to find the contribution of the RVLM to cardiovascular responses elicited by glutamate microinjection into the BST. Methods: Experiments were done in α-ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 27 شماره
صفحات -
تاریخ انتشار 2005