Energy Aware Register File Implementation through Instruction Predecode
نویسندگان
چکیده
The register file is a power-hungry device in modern architectures. Current research on compiler technology and computer architectures encourages the implementation of larger devices to feed multiple data paths and to store global variables. However, low power techniques are not able to appreciably reduce power consumption in this device without a time penalty. This paper introduces an efficient hardware approach to reduce the register file energy consumption by turning unused registers into a low power state. Bypassing the register fields of the fetch instruction to the decode stage allows the identification of registers required by the current instruction (instruction predecode) and allows the control logic to turn them back on. They are put into the low-power state after the instruction use. This technique achieves an 85% energy reduction with no performance penalty. The simplicity of the approach makes it an effective low-power technique for embedded processors.
منابع مشابه
A hardware mechanism to reduce the energy consumption of the register file of in-order architectures
This paper introduces an efficient hardware approach to reduce the register file energy consumption by turning unused registers into a low power state. Bypassing the register fields of the fetch instruction to the decode stage allows the identification of registers required by the current instruction (instruction predecode) and allows the control logic to turn them back on. They are put into th...
متن کاملEnergy-aware compilation and hardware design for VLIW embedded systems
Tomorrow’s embedded devices need to run multimedia applications demanding high computational power with low energy consumption constraints. In this context, the register file is a key source of power consumption and its inappropriate design and management severely affects system power. In this paper, we present a new approach to reduce the energy of shared register files in forthcoming embedded...
متن کاملCompiler-assisted power optimization for clustered VLIW architectures
Clustered VLIW architectures solve the scalability problem associated with flat VLIW architectures by partitioning the register file and connecting only a subset of the functional units to a register file. However, inter-cluster communication in clustered architectures leads to increased leakage in functional components and a high number of register accesses. In this paper, we propose compiler ...
متن کاملCompiler-Driven Leakage Energy Reduction in Banked Register Files
Tomorrow’s embedded devices need to run high-resolution multimedia applications which need an enormous computational complexity with a very low energy consumption constraint. In this context, the register file is one of the key sources of power consumption and its inappropriate design and management can severely affect the performance of the system. In this paper, we present a new approach to r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003