Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology
نویسندگان
چکیده
Modular and orthogonal genetic logic gates are essential for building robust biologically based digital devices to customize cell signalling in synthetic biology. Here we constructed an orthogonal AND gate in Escherichia coli using a novel hetero-regulation module from Pseudomonas syringae. The device comprises two co-activating genes hrpR and hrpS controlled by separate promoter inputs, and a σ(54)-dependent hrpL promoter driving the output. The hrpL promoter is activated only when both genes are expressed, generating digital-like AND integration behaviour. The AND gate is demonstrated to be modular by applying new regulated promoters to the inputs, and connecting the output to a NOT gate module to produce a combinatorial NAND gate. The circuits were assembled using a parts-based engineering approach of quantitative characterization, modelling, followed by construction and testing. The results show that new genetic logic devices can be engineered predictably from novel native orthogonal biological control elements using quantitatively in-context characterized parts.
منابع مشابه
Modular, Multi-Input Transcriptional Logic Gating with Orthogonal LacI/GalR Family Chimeras
In prokaryotes, the construction of synthetic, multi-input promoters is constrained by the number of transcription factors that can simultaneously regulate a single promoter. This fundamental engineering constraint is an obstacle to synthetic biologists because it limits the computational capacity of engineered gene circuits. Here, we demonstrate that complex multi-input transcriptional logic g...
متن کاملA Design Methodology for Reliable MRF-Based Logic Gates
Probabilistic-based methods have been used for designing noise tolerant circuits recently. In these methods, however, there is not any reliability mechanism that is essential for nanometer digital VLSI circuits. In this paper, we propose a novel method for designing reliable probabilistic-based logic gates. The advantage of the proposed method in comparison with previous probabilistic-based met...
متن کاملSynBioLGDB: a resource for experimentally validated logic gates in synthetic biology
Synthetic biologists have developed DNA/molecular modules that perform genetic logic operations in living cells to track key moments in a cell's life or change the fate of a cell. Increasing evidence has also revealed that diverse genetic logic gates capable of generating a Boolean function play critically important roles in synthetic biology. Basic genetic logic gates have been designed to com...
متن کاملA Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates
The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...
متن کاملorward engineering of synthetic bio-logical AND gates
The field of synthetic biology has produced genetic circuits capable of emulating functional paradigms seen in digital electronic circuits. Examples are bistable switches, oscillators, and logic gates. The present work combines detailed mechanistic-kinetic models and stochastic simulation techniques as well as the techniques of in vivo molecular biology to study the potential of a synthetic, si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2011