Scale Dependence in the Species-richness–productivity Relationship: the Role of Species Turnover
نویسندگان
چکیده
Recent research in aquatic systems suggests that productivity–richness relationships change with spatial scale and that species turnover (i.e., spatial and temporal variation in species composition) plays an important role in generating this scale dependence. The generality of such scale dependence and the effects of variation in temporal scale remain unknown. We examined the extent to which the richness–productivity relationship in terrestrial plant communities depends on spatial or temporal scale and evaluated how spatial and temporal turnover (i.e., species turnover in space and time) generates scale dependence in these relationships using data from two Long-Term Ecological Research (LTER) sites (Jornada and Konza). We found a weak hump-shaped relationship (Jornada) and no relationship (Konza) between richness and productivity at the smallest focal scale (1 m2 at Jornada and 50 m2 at Konza) at each site, but strong hump-shaped relationships at the largest focal scale (49 m2 at Jornada and 200 m2 at Konza) for each site. Relationships between spatial turnover and productivity at each site mirrored the productivity–richness relationships that emerged at the larger spatial scale (i.e., a significant hump-shaped pattern). In contrast, temporal turnover was unrelated to productivity, and hence increasing temporal scale did not appreciably change the form of the productivity–richness relationship. Our study suggests that the way in which productivity–richness relationships change with spatial or temporal scale depends on the form and strength of the underlying relationship between species turnover and productivity. Moreover, we contend that a dominant effect of increasing productivity is the generation of dissimilarity in species composition among localities that comprise a region, rather than increasing the number of species that occur within local communities. Thus, understanding the mechanisms that cause species turnover to vary with productivity is critical to understanding scale dependence in richness–productivity relationships.
منابع مشابه
Change of Species Diversity in Vascular Plants Across Ecological Species Groups
Biodiversity plays a crucial role in stability and productivity of natural ecosystem. The main goal of this research was to classify ecological groups in steppe rangeland and investigate their relationships with plant diversity indices. Therefore, fifty different Land Unit Tracts (LUT) were identified in Khod-Neuk basin, Yazd province, Iran, in 2010. Vegetation and soil samples were taken in th...
متن کاملRevisiting spatial scale in the productivity–species richness relationship: fundamental issues and global change implications
The relationship between net primary productivity (NPP) and species richness has been the subject of long-running debate. A changing climate gives added impetus to resolving this debate, as it becomes increasingly necessary to predict biodiversity responses that might arise from shifts in productivity or its climatic correlates. It has become increasingly clear that at small scales productivity...
متن کاملRelationships between Species Diversity and Biomass in Mountainous Habitats in Zagros Rangeland (Case Study: Baneh, Kurdistan, Iran)
Species diversity, richness and biomasses (aboveground biomass) and their relationships are the key variables of ecosystems. This study was conducted to determine the relationship of Species Diversity (SD) and Species Richness (SR) with Above-Ground Biomass (AGB) at a local scale at 5 different habitats (shrubland, forbland, grassland, shrub-forbland and forb-shrubland) in Zagros mountains in w...
متن کاملTemperature dependence, spatial scale, and tree species diversity in eastern Asia and North America.
The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic t...
متن کاملEmphasizing New Ideas to Stimulate Research in Ecology
Ecosystem engineering—the physical modification of habitats by organisms—can create patches with altered species richness relative to adjacent, unmodified patches. The effect of ecosystem engineering on patch-scale species richness is likely to be difficult to predict from the identity of the engineer, the resources altered as a result of engineering, or the identities of the affected species. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004