Long-term caloric restriction abrogates the age-related decline in skeletal muscle aerobic function.

نویسندگان

  • Russell T Hepple
  • David J Baker
  • Jan J Kaczor
  • Daniel J Krause
چکیده

The purpose of this study was to determine the effect of long-term caloric restriction (CR) on the age-associated decline of skeletal muscle aerobic function. Skeletal muscle maximal aerobic performance (VO2max) was assessed in ad libitum (AL) and CR rats aged 8-10 months and 35 months using a pump-perfused hindlimb model to match oxygen delivery to muscle mass between groups. Whereas there was a 46% decline in muscle mass-specific VO2max between 8-10 mo (524+/-13 micromol x min(-1) x 100 g(-1); mean+/- SE) and 35 mo (281+/-54 micromol x min(-1) x 100 g(-1)) in AL rats, not only did CR rats begin at the same point in 8-10 mo old rats (490+/-42 micromol x min(-1) x 100 g(-1)), we found no decline in 35 mo old CR animals (484+/-49 micromol x min(-1) x 100 g(-1)). Interestingly, although most markers of oxidative capacity began at a lower point in young adult CR animals, CR rats exhibited a higher in situ activity of complex IV at VO2max. This activity allows the young adult CR animals to exhibit normal aerobic capacity despite the lower oxidative enzyme activities. In stark contrast to the 19-41% decline in activities of citrate synthase, complexes I-III, and complex IV in homogenates prepared from the plantaris muscle and mixed region of gastrocnemius muscle with aging in AL rats, no age-related decline was found in CR animals. Thus, our results showed that CR preserves aerobic function in aged skeletal muscles by facilitating a higher in situ function of complex IV and by preventing the age-related decline in mitochondrial oxidative capacity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart.

Mitochondria are chronically exposed to reactive oxygen intermediates. As a result, various tissues, including skeletal muscle and heart, are characterized by an age-associated increase in reactive oxidant-induced mitochondrial DNA (mtDNA) damage. It has been postulated that these alterations may result in a decline in the content and rate of production of ATP, which may affect tissue function,...

متن کامل

Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms b...

متن کامل

Effect of Aerobic Exercise with Blood Flow Restriction on Mitochondrial Dynamics Proteins of Human Skeletal Muscles

Background: Aerobic exercise with Blood Flow Restriction (BFR) plays an important role in skeletal muscle adaptation; however, the effects of this type of exercise on mitochondrial dynamics proteins are unclear. Objective: The purpose of this study was to investigate the effect of aerobic exercise with and without BFR on mitochondrial dynamics proteins of human skeletal muscles.  Methods: Pa...

متن کامل

Ursolic acid: a versatile triterpenoid compound in regulating the aging

We and other studies have elucidated single molecules that can attenuate aging and extend longevity. Indeed, these molecules could prevent age-associated diseases simultaneously and probably extending healthy-life spans. In this review, we discuss recent advances, controversies, opportunities and challenges surrounding ursolic acid (UA) in relationship with aging. In this regard, UA also known ...

متن کامل

Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise.

The cellular basis of age-related behavioral decline remains obscure but alterations in synapses are likely candidates. Accordingly, the beneficial effects on neural function of caloric restriction and exercise, which are among the most effective anti-aging treatments known, might also be mediated by synapses. As a starting point in testing these ideas, we studied the skeletal neuromuscular jun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 2005