Optimal Fillings - A new spatial subdivision problem related to packing and covering

نویسندگان

  • Carolyn L. Phillips
  • Joshua A. Anderson
  • Elizabeth R. Chen
  • Sharon C. Glotzer
چکیده

We present filling as a new type of spatial subdivision problem that is related to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show that solutions correspond to sets of maximal n-balls and the solution space can reduced to the medial axis of a shape. We examine the structure of the solution space in two dimensions. For the filling of polygons, we provide detailed descriptions of a heuristic and a genetic algorithm for finding solutions of maximal discs. We also consider the properties of ideal distributions of N discs in polygons as N →∞.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new metaheuristic genetic-based placement algorithm for 2D strip packing

Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. I...

متن کامل

In the Local Theory of Packing

In this paper we are concerned with three lattice problems: the lattice packing problem, the lattice covering problem and the lattice packing-covering problem. One way to find optimal lattices for these problems is to enumerate all finitely many, locally optimal lattices. For the lattice packing problem there are two classical algorithms going back to Minkowski and Voronoi. For the covering and...

متن کامل

Optimal filling of shapes.

We present filling as a type of spatial subdivision problem similar to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show that solutions correspond to sets of maximal n-balls. For polygons, we provide a heuri...

متن کامل

Computational Approaches to Lattice Packing and Covering Problems

We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinit...

متن کامل

 Abstract: Packing rectangular shapes into a rectangular space is one of the most important discussions on Cutting & Packing problems (C;P) such as: cutting problem, bin-packing problem and distributor's pallet loading problem, etc. Assume a set of rectangular pieces with specific lengths, widths and utility values. Also assume a rectangular packing space with specific width and length. The obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1208.5752  شماره 

صفحات  -

تاریخ انتشار 2012