Sequence-based multiscale modeling for high-throughput chromosome conformation capture (Hi-C) data analysis
نویسنده
چکیده
In this paper, we introduce sequence-based multiscale modeling for biomolecular data analysis. We employ spectral clustering method in our modeling and reveal the difference between sequence-based global scale clustering and local scale clustering. Essentially, two types of distances, i.e., Euclidean (or spatial) distance and genomic (or sequential) distance, can be used in data clustering. Clusters from sequence-based global scale models optimize spatial distances, meaning spatially adjacent loci are more likely to be assigned into the same cluster. Sequence-based local scale models, on the other hand, result in clusters that optimize genomic distances. That is to say, in these models, sequentially adjoining loci tend to be cluster together. We propose two sequence-based multiscale models (SeqMMs) for the study of chromosome hierarchical structures, including genomic compartments and topological associated domains (TADs). We find that genomic compartments are determined only by global scale information in the Hi-C data. The removal of all the local interactions within a band region as large as 10 Mb in genomic distance has almost no significant influence on the final compartment results. Further, in TAD analysis, we find that when the sequential scale is small, a tiny variation of diagonal band region in a contact map will result in a great change in the predicted TAD boundaries. When the scale value is larger than a threshold value, the TAD boundaries become very consistent. This threshold value is highly related to TAD sizes. By the comparison of our results with those previously obtained using a spectral clustering model, we find that our method is more robust and reliable. Finally, we demonstrate that almost all TAD boundaries from both clustering methods are local minimum of a TAD summation function.
منابع مشابه
Hi-C in Budding Yeast.
Hi-C enables simultaneous detection of interaction frequencies between all possible pairs of restriction fragments in the genome. The Hi-C method is based on chromosome conformation capture (3C), which uses formaldehyde cross-linking to fix chromatin regions that interact in three-dimensional space, irrespective of their genomic locations. In the Hi-C protocol described here, cross-linked chrom...
متن کاملDeconvoluting simulated metagenomes: the performance of hard- and soft- clustering algorithms applied to metagenomic chromosome conformation capture (3C)
BACKGROUND Chromosome conformation capture, coupled with high throughput DNA sequencing in protocols like Hi-C and 3C-seq, has been proposed as a viable means of generating data to resolve the genomes of microorganisms living in naturally occuring environments. Metagenomic Hi-C and 3C-seq datasets have begun to emerge, but the feasibility of resolving genomes when closely related organisms (str...
متن کاملHi-C: Genome-wide Chromosome Conformation Capture
The three-dimensional conformation of chromosomes in the nucleus is important for many cellular processes, including the regulation of gene expression, DNA replication, and chromatin structure [1]. Despite having the entire sequence of the genome, very little has been understood about three-dimensional chromosome conformation beyond the scale of the nucleosome. However, recent advances in molec...
متن کاملIntegrating multi-omic features exploiting Chromosome Conformation Capture data
The representation, integration, and interpretation of omic data is a complex task, in particular considering the huge amount of information that is daily produced in molecular biology laboratories all around the world. The reason is that sequencing data regarding expression profiles, methylation patterns, and chromatin domains is difficult to harmonize in a systems biology view, since genome b...
متن کاملCharacteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution
High-throughput chromosome conformation capture (3C) technologies, such as Hi-C, have made it possible to survey 3D genome structure. However, obtaining 3D profiles at kilobase resolution at low cost remains a major challenge. Therefore, we herein present an algorithm for precise identification of chromatin interaction sites at kilobase resolution from MNase-seq data, termed chromatin interacti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018