Smooth muscle alpha-actin gene requires two E-boxes for proper expression in vivo and is a target of class I basic helix-loop-helix proteins.
نویسندگان
چکیده
Changes in the differentiated state of smooth muscle cells (SMCs) play a key role in vascular diseases, yet the mechanisms controlling SMC differentiation are still largely undefined. We addressed the role of basic helix-loop-helix (bHLH) proteins in SMC differentiation by first determining the role of two E-box (CAnnTG) motifs, binding sites for bHLH proteins, in the transcriptional regulation of the SMC differentiation marker gene, smooth muscle alpha-actin (SM alpha-actin), in vivo. Mutation of one or both E-boxes significantly reduced the expression of a -2560- to 2784-bp SM alpha-actin promoter/LacZ reporter gene in vivo in transgenic mice. We then determined the potential role of class I bHLH proteins, E12, E47, HEB, and E2-2, in SM alpha-actin regulation. In cotransfection experiments, E12, HEB, and E2-2 activated the SM alpha-actin promoter. Activation by HEB and E2-2 was synergistic with serum response factor. Additionally, the dominant-negative/inhibitory HLH proteins, Id2, Id3, and Twist, inhibited both the E12 and serum response factor-induced activations of the SM alpha-actin promoter. Finally, we demonstrated that E2A proteins (E12/E47) specifically bound the E-box-containing region of the SM alpha-actin promoter in vivo in the context of intact chromatin in SMCs. Taken together, these results provide the first evidence of E-box-dependent regulation of a SMC differentiation marker gene in vivo in transgenic mice. Moreover, they demonstrate a potential role for class I bHLH factors and their inhibitors, Id and Twist, in SM alpha-actin regulation and suggest that these factors may play an important role in control of SMC differentiation and phenotypic modulation.
منابع مشابه
A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملProtein Inhibitor of Activated STAT, PIASy Regulates α-Smooth Muscle Actin Expression by Interacting with E12 in Mesangial Cells
Phenotypic transformation of mesangial cells (MCs) is implicated in the development of glomerular disease; however, the mechanisms underlying their altered genetic program is still unclear. α-smooth muscle actin (α-SMA) is known to be a crucial marker for phenotypic transformation of MCs. Recently, E-boxes and the class I basic helix-loop-helix proteins, such as E12 have been shown to regulateα...
متن کاملZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation.
A number of genes, spanning the evolutionary scale from yeast to mammals, that are involved in spatial and temporal patterning during development contain zinc finger and homeodomain motifs. One such zinc finger/homeodomain protein is Drosophila Zfh-1, a member of the zfh family of Drosophila genes, which is expressed in muscle precursors and is critical for the proper development of muscle. Her...
متن کاملThe Drosophila basic helix-loop-helix protein DIMMED directly activates PHM, a gene encoding a neuropeptide-amidating enzyme.
The basic helix-loop-helix (bHLH) protein DIMMED (DIMM) supports the differentiation of secretory properties in numerous peptidergic cells of Drosophila melanogaster. DIMM is coexpressed with diverse amidated neuropeptides and with the amidating enzyme peptidylglycine alpha-hydroxylating monooxygenase (PHM) in approximately 300 cells of the late embryo. Here we confirm that DIMM has transcripti...
متن کاملDifferent E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer.
Basic helix-loop-helix (bHLH) regulatory proteins are known to bind to a single DNA consensus sequence referred to as an E-box. The E-box is present in the regulatory elements of many developmentally controlled genes, including most muscle-specific genes such as troponin I (TnI). Although the E-box consensus is minimally defined as CANNTG, the adjacent nucleotides of functional E-boxes are vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 92 8 شماره
صفحات -
تاریخ انتشار 2003