Frictional Forces and Amontons’ Law: From the Molecular to the Macroscopic Scale

نویسندگان

  • Jianping Gao
  • W. D. Luedtke
  • Uzi Landman
چکیده

We review the historical and modern understanding of the most basic equation of friction, Amontons’ law, which describes phenomena that were already understood and studied by Leonardo da Vinci 500 years ago. This law states that for any two materials the (lateral) friction force is directly proportional to the (normal) applied load, with a constant of proportionality, the friction coefficient, that is constant and independent of the contact area, the surface roughness, and the sliding velocity. No theory has yet satisfactorily explained this surprisingly general law; all attempts have been model or system dependent. We review the experimental evidence and find, for example, that the same friction coefficient is often measured for the same system of materials with junctions whose areas differ by more than 6 orders of magnitude. The trends obtained through molecular dynamics (MD) simulations agree with recent and past experiments and with Amontons’ law, and they suggest that the local energy-dissipating mechanisms are not merely “mechanical”, as assumed in most models, but “thermodynamic” in nature, like miniature irreversible compression-decompression cycles of the trapped molecules between the surface asperities as they pass over each other. The MD analysis reveals that, for such dynamic, nonequilibrium, energy-dissipating processes, a proper statistical description can be formulated through the use of the Weibull distribution of the local friction forces, which may be regarded to serve in this context a similar purpose as the Boltzmann distribution for classical systems at equilibrium. Another important conclusion is that the concept of the “real” area of contact is a nonfundamental quantity, whether at the nano-, micro-, or macroscale. However, it may serve as a convenient scaling parameter for describing the really fundamental parameters, which are the number density of atoms, molecules, or bonds involved in an adhesive or frictional interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friction Laws for Elastic Nano-Scale Contacts

– The effect of surface curvature on the law relating frictional forces F with normal load L is investigated by molecular dynamics simulations as a function of surface symmetry, adhesion, and contamination. Curved, non-adhering, dry, commensurate surfaces show a linear dependency, F ∝ L, similar to dry flat commensurate or amorphous surfaces and macroscopic surfaces. In contrast, curved, non-ad...

متن کامل

Principles of atomic friction: from sticking atoms to superlubric sliding.

Tribology-the science of friction, wear and lubrication-is of great importance for all technical applications where moving bodies are in contact. Nonetheless, little progress has been made in finding an exact atomistic description of friction since Amontons proposed his empirical macroscopic laws over three centuries ago. The advent of new experimental tools such as the friction force microscop...

متن کامل

Systematic Breakdown of Amontons' Law of Friction for an Elastic Object Locally Obeying Amontons' Law

In many sliding systems consisting of solid object on a solid substrate under dry condition, the friction force does not depend on the apparent contact area and is proportional to the loading force. This behaviour is called Amontons' law and indicates that the friction coefficient, or the ratio of the friction force to the loading force, is constant. Here, however, using numerical and analytica...

متن کامل

Generalized law of friction between elastomers and differently shaped rough bodies

In this paper, we study theoretically and experimentally the friction between a rough parabolic or conical profile and a flat elastomer beyond the validity region of Amontons' law. The roughness is assumed to be randomly self-affine with a Hurst exponent H in the range from 0 to 1. We first consider a simple Kelvin body and then generalize the results to media with arbitrary linear rheology. Th...

متن کامل

Sustained frictional instabilities on nanodomed surfaces: stick-slip amplitude coefficient.

Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modern miniaturized devices. In this work, lateral force microscopy was used to study the frictional properties between an AFM nanotip and surfaces bearing well-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004