Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods

نویسندگان

  • Thomas Villmann
  • Frank-Michael Schleif
  • Markus Kostrzewa
  • Axel Walch
  • Barbara Hammer
چکیده

In the present contribution we propose two recently developed classification algorithms for the analysis of mass-spectrometric data-the supervised neural gas and the fuzzy-labeled self-organizing map. The algorithms are inherently regularizing, which is recommended, for these spectral data because of its high dimensionality and the sparseness for specific problems. The algorithms are both prototype-based such that the principle of characteristic representants is realized. This leads to an easy interpretation of the generated classifcation model. Further, the fuzzy-labeled self-organizing map is able to process uncertainty in data, and classification results can be obtained as fuzzy decisions. Moreover, this fuzzy classification together with the property of topographic mapping offers the possibility of class similarity detection, which can be used for class visualization. We demonstrate the power of both methods for two exemplary examples: the classification of bacteria (listeria types) and neoplastic and non-neoplastic cell populations in breast cancer tissue sections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced metric adaptation in Generalized LVQ for classification of mass spectrometry data

Metric adaptation constitutes a powerful approach to improve the performance of prototype based classication schemes. We apply extensions of Generalized LVQ based on different adaptive distance measures in the domain of clinical proteomics. The Euclidean distance in GLVQ is extended by adaptive relevance vectors and matrices of global or local influence where training follows a stochastic gradi...

متن کامل

Cancer informatics by prototype networks in mass spectrometry

OBJECTIVE Mass spectrometry has become a standard technique to analyze clinical samples in cancer research. The obtained spectrometric measurements reveal a lot of information of the clinical sample at the peptide and protein level. The spectra are high dimensional and, due to the small number of samples a sparse coverage of the population is very common. In clinical research the calculation an...

متن کامل

Sample handling for mass spectrometric proteomic investigations of human sera.

Proteomic investigations of sera are potentially of value for diagnosis, prognosis, choice of therapy, and disease activity assessment by virtue of discovering new biomarkers and biomarker patterns. Much debate focuses on the biological relevance and the need for identification of such biomarkers while less effort has been invested in devising standard procedures for sample preparation and stor...

متن کامل

Analysis of Spectral Data in Clinical Proteomics by Use of Learning Vector Quantizers

Clinical proteomics based on mass spectrometry has gained tremendous visibility in the scientific and clinical community. Machine learning methods are keys for efficient processing of the complex data. One major class are prototype based algorithms. Prototype based vector quantizers or classifiers are intuitive approaches realizing the principle of characteristic representatives for data subset...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Briefings in bioinformatics

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2008