Bioengineering the Endocrine Pancreas: Intraomental Islet Transplantation Within a Biologic Resorbable Scaffold
نویسندگان
چکیده
Transplantation of pancreatic islets is a therapeutic option to preserve or restore β-cell function. Our study was aimed at developing a clinically applicable protocol for extrahepatic transplantation of pancreatic islets. The potency of islets implanted onto the omentum, using an in situ-generated adherent, resorbable plasma-thrombin biologic scaffold, was evaluated in diabetic rat and nonhuman primate (NHP) models. Intraomental islet engraftment in the biologic scaffold was confirmed by achievement of improved metabolic function and preservation of islet cytoarchitecture, with reconstitution of rich intrainsular vascular networks in both species. Long-term nonfasting normoglycemia and adequate glucose clearance (tolerance tests) were achieved in both intrahepatic and intraomental sites in rats. Intraomental graft recipients displayed lower levels of serum biomarkers of islet distress (e.g., acute serum insulin) and inflammation (e.g., leptin and α2-macroglobulin). Importantly, low-purity (30:70% endocrine:exocrine) syngeneic rat islet preparations displayed function equivalent to that of pure (>95% endocrine) preparations after intraomental biologic scaffold implantation. Moreover, the biologic scaffold sustained allogeneic islet engraftment in immunosuppressed recipients. Collectively, our feasibility/efficacy data, along with the simplicity of the procedure and the safety of the biologic scaffold components, represented sufficient preclinical testing to proceed to a pilot phase I/II clinical trial.
منابع مشابه
Activation of c-Jun NH2-terminal kinase during islet isolation.
Pancreatic islet transplantation has been remarkably improved by the Edmonton protocol; however, it is not easy to achieve insulin independence after islet transplantation from one donor pancreas. The islet isolation procedure itself destroys cellular and noncellular components of the pancreas that probably play a role in supporting islet survival. Further islet transplantation exposes cells to...
متن کاملIntroducing a New Experimental Islet Transplantation Model using Biomimetic Hydrogel and a Simple High Yield Islet Isolation Technique
Background: Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functi...
متن کاملImmunohistochemical characterization of pancreatic duodenal homeobox protein-1, neurogenin-3 and insulin protein expressions in islet-mesenchymal cell in vitro interactions from injured adult pancreatic tissues: a morphochronological evaluation
Objective(s): The use of a co-culture of islets with mesenchymal stromal cells (MSCs) is a promising therapy in islet transplantation to revert hyperglycaemia, but the resulting insulin-producing cells (IPCs) express low levels of pancreas endocrine developmental genes. This study aims to investigate the morphochronology of a co-culture of islets with MSCs from injured adult pancreata, and char...
متن کاملSericin in the isolating solution improves the yield of islets isolated from the pancreas
Approximately half of the transplantable pancreatic islet tissue is lost during isolation, including the digestion and purification steps. Modifying the isolation method could increase the yield. This would enable the one donor-one recipient concept and improve the therapeutic effects of islet transplantation. This study aims to improve islet transplantation by increasing the yield of islets fr...
متن کاملThe transplanted fetal endocrine pancreas undergoes an inherent sequential differentiation similar to that in the native pancreas. An ultrastructural study in the pig-to-mouse model.
This study examines, at the ultrastructural level, whether the fetal porcine endocrine pancreas (insulin, glucagon, somatostatin, and pancreatic polypeptide [PP]- and islet amyloid polypeptide [IAPP]-containing cells) develops normally after transplantation under the kidney capsule in athymic mice. We have thus used an in vivo pig-to-mouse model for the differentiation of the endocrine pancreas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 65 شماره
صفحات -
تاریخ انتشار 2016