Enhancement of seawater corrosion resistance in copper using acetone-derived graphene coating.

نویسندگان

  • Jae-Hoon Huh
  • Seung Hyun Kim
  • Jae Hwan Chu
  • Sung Youb Kim
  • Ji Hyun Kim
  • Soon-Yong Kwon
چکیده

We show that acetone-derived graphene coating can effectively enhance the corrosion efficiency of copper (Cu) in a seawater environment (0.5-0.6 M (∼3.0-3.5%) sodium chloride). By applying a drop of acetone (∼20 μl cm(-2)) on Cu surfaces, rapid thermal annealing allows the facile and rapid synthesis of graphene films on Cu surfaces with a monolayer coverage of almost close to ∼100%. Under optimal growth conditions, acetone-derived graphene is found to have a relatively high crystallinity, comparable to common graphene grown by chemical vapor deposition. The resulting graphene-coated Cu surface exhibits 37.5 times higher corrosion resistance as compared to that of mechanically polished Cu. Further, investigation on the role of graphene coating on Cu surfaces suggests that the outstanding corrosion inhibition efficiency (IE) of 97.4% is obtained by protecting the underlying Cu against the penetration of both dissolved oxygen and chlorine ions, thanks to the closely spaced atomic structure of the graphene sheets. The increase of graphene coating thickness results in the enhancement of the overall corrosion IE up to ∼99%, which can be attributed to the effective blocking of the ionic diffusion process via grain boundaries. Overall, our results suggest that the acetone-derived graphene film can effectively serve as a corrosion-inhibiting coating in the seawater level and that it may have a promising role to play for potential offshore coating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-Term Corrosion Protection of a Cupro-Nickel Alloy Due to Graphene Coating

This study demonstrates the corrosion resistance of a Cu-Ni alloy coated with a multi-layer graphene. This is one of the first demonstrations of long-term corrosion resistance due to graphene coating, which is crucial since earlier studies have suggested graphene-coated copper to be considerably inferior to bare copper in terms of corrosion during long-term exposure to a corrosive environment. ...

متن کامل

Durable Corrosion Resistance of Copper Due to Multi-Layer Graphene

Ultra-thin graphene coating has been reported to provide considerable resistance against corrosion during short-term exposures, however, there is great variability in the corrosion resistance due to graphene coating in different studies. It may be possible to overcome the problem of hampered corrosion protection ability of graphene that is caused due to defective single layer graphene by applyi...

متن کامل

Developing of Corrosion Resistance Nano Copper Oxide Coating on Copper using Anodization in Oxalate solution

Copper alloys are widely used in the manufacturing of heat transfer applications, this due to their excellent heat transfer properties. Copper contamination is one of the serious industrial problems in the boiler feed water system. This contamination commonly resulted from copper corrosion reactions in boiler feed water environment. The best way to reduce the copper contamination is by improvin...

متن کامل

Graphene: An effective oxidation barrier coating for liquid and two-phase cooling systems

Graphene is studied as an oxidation barrier coating for liquid and liquid–vapor phase-change cooling systems. Forced convection heat transfer experiments on bare and graphene-coated copper surfaces reveal identical liquid-phase and two-phase thermal performance for the two surfaces. Surface analysis after thermal testing indicates significant oxide formation on the entire surface of the bare co...

متن کامل

Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2014