Cadm1-Expressing Synapses on Purkinje Cell Dendrites Are Involved in Mouse Ultrasonic Vocalization Activity

نویسندگان

  • Eriko Fujita
  • Yuko Tanabe
  • Beat A. Imhof
  • Mariko Y. Momoi
  • Takashi Momoi
چکیده

Foxp2(R552H) knock-in (KI) mouse pups with a mutation related to human speech-language disorders exhibit poor development of cerebellar Purkinje cells and impaired ultrasonic vocalization (USV), a communication tool for mother-offspring interactions. Thus, human speech and mouse USV appear to have a Foxp2-mediated common molecular basis in the cerebellum. Mutations in the gene encoding the synaptic adhesion molecule CADM1 (RA175/Necl2/SynCAM1/Cadm1) have been identified in people with autism spectrum disorder (ASD) who have impaired speech and language. In the present study, we show that both Cadm1-deficient knockout (KO) pups and Foxp2(R552H) KI pups exhibit impaired USV and smaller cerebellums. Cadm1 was preferentially localized to the apical-distal portion of the dendritic arbor of Purkinje cells in the molecular layer of wild-type pups, and VGluT1 level decreased in the cerebellum of Cadm1 KO mice. In addition, we detected reduced immunoreactivity of Cadm1 and VGluT1 on the poorly developed dendritic arbor of Purkinje cells in the Foxp2(R552H) KI pups. However, Cadm1 mRNA expression was not altered in the Foxp2(R552H) KI pups. These results suggest that although the Foxp2 transcription factor does not target Cadm1, Cadm1 at the synapses of Purkinje cells and parallel fibers is necessary for USV function. The loss of Cadm1-expressing synapses on the dendrites of Purkinje cells may be associated with the USV impairment that Cadm1 KO and Foxp2(R552H) KI mice exhibit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eph Receptors Are Involved in the Activity-Dependent Synaptic Wiring in the Mouse Cerebellar Cortex

Eph receptor tyrosine kinases are involved in many cellular processes. In the developing brain, they act as migratory and cell adhesive cues while in the adult brain they regulate dendritic spine plasticity. Here we show a new role for Eph receptor signalling in the cerebellar cortex. Cerebellar Purkinje cells are innervated by two different excitatory inputs. The climbing fibres contact the pr...

متن کامل

Translocation of a “Winner” Climbing Fiber to the Purkinje Cell Dendrite and Subsequent Elimination of “Losers” from the Soma in Developing Cerebellum

Functional neural circuits are formed by eliminating early-formed redundant synapses and strengthening necessary connections during development. In newborn mouse cerebellum, each Purkinje cell (PC) is innervated by multiple climbing fibers (CFs) with similar strengths. Subsequently, a single CF is selectively strengthened by postnatal day 7 (P7). We find that this competition among multiple CFs...

متن کامل

Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess ...

متن کامل

Current Neurobiology 2010; 1 (1): 77-81

During development of the central nervous system, successive intrinsic and extrinsic programs control the specification, proliferation, and migration of individual neuronal cell types that ultimately result in the formation of precise synaptic connections. In previous research, expression profiling of the developing mouse cerebellum identified genes expressed during specific phases of neuronal ...

متن کامل

Dendritic translocation establishes the winner in cerebellar climbing fiber synapse elimination.

In many regions of the developing mammalian nervous system, functional synaptic circuitry is formed by competitive elimination of early formed redundant synapses. However, how winning synapses emerge through competition remains unclear in the brain largely because of the technical difficulty of directly observing this dynamic cellular process in vivo. Here, we developed a method of two-photon m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012