Detecting Engagement in Egocentric Video

نویسندگان

  • Yu-Chuan Su
  • Kristen Grauman
چکیده

In a wearable camera video, we see what the camera wearer sees. While this makes it easy to know roughly what he chose to look at, it does not immediately reveal when he was engaged with the environment. Specifically, at what moments did his focus linger, as he paused to gather more information about something he saw? Knowing this answer would benefit various applications in video summarization and augmented reality, yet prior work focuses solely on the “what” question (estimating saliency, gaze) without considering the “when” (engagement). We propose a learning-based approach that uses long-term egomotion cues to detect engagement, specifically in browsing scenarios where one frequently takes in new visual information (e.g., shopping, touring). We introduce a large, richly annotated dataset for ego-engagement that is the first of its kind. Our approach outperforms a wide array of existing methods. We show engagement can be detected well independent of both scene appearance and the camera wearer’s identity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intentional Photos from an Unintentional Photographer: Detecting Snap Points in Egocentric Video with a Web Photo Prior

Wearable cameras capture a first-person view of the world, and offer a hands-free way to record daily experiences or special events. Yet, not every frame is worthy of being captured and stored. We propose to automatically predict “snap points” in unedited egocentric video—that is, those frames that look like they could have been intentionally taken photos. We develop a generative model for snap...

متن کامل

Detecting Snap Points in Egocentric Video with a Web Photo Prior

Wearable cameras capture a first-person view of the world, and offer a hands-free way to record daily experiences or special events. Yet, not every frame is worthy of being captured and stored. We propose to automatically predict “snap points” in unedited egocentric video— that is, those frames that look like they could have been intentionally taken photos. We develop a generative model for sna...

متن کامل

Egocentric Meets Surveillance

Thanks to the availability and increasing popularity of Egocentric cameras such as GoPro cameras, glasses, and etc. we have been provided with a plethora of videos captured from the first person perspective. Surveillance cameras and Unmanned Aerial Vehicles(also known as drones) also offer tremendous amount of videos, mostly with top-down or oblique view-point. Egocentric vision and top-view su...

متن کامل

Detecting Hands in Children's Egocentric Views to Understand Embodied Attention during Social Interaction

Understanding visual attention in children could yield insight into how the visual system develops during formative years and how children’s overt attention plays a role in development and learning. We are particularly interested in the role of hands and hand activities in children’s visual attention. We use headmounted cameras to collect egocentric video and eye gaze data of toddlers during pl...

متن کامل

Activity Recognition in Egocentric Life-Logging Videos

With the increasing availability of wearable cameras, research on first-person view videos (egocentric videos) has received much attention recently. While some effort has been devoted to collecting various egocentric video datasets, there has not been a focused effort in assembling one that could capture the diversity and complexity of activities related to life-logging, which is expected to be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016