CdSxSey/TiO2 Solar Cell Prepared with Sintered Mixture Deposition

نویسندگان

  • Daniel Ogermann
  • Thorsten Wilke
  • Karl Kleinermanns
چکیده

Grätzel cells were prepared by using CdSeand CdSxSey-nanoparticles as sensitizer. The quantum dots were incorporated in various sizes and concentrations in a TiO2 nanoparticle layer by a simple mixing procedure. The advantage of this method compared to anchoring of nanoparticles to TiO2 by linker molecules or chemical bath deposition is that we are able to control the ratio between TiO2 and CdSe or CdSxSey more precisely and over a larger range of concentrations. TiO2 solar cells sensitized by this technique achieved photon-to-current conversion efficiencies (IPCE) of ~40% in the range of 300 500 nm with a maximum IPCE of ~70% at 400 nm (sulphide/sulphate electrolyte). The best results at wavelengths above 500 nm were achieved with CdSxSey/TiO2 cells at a molar ratio of 6:1 (S:Se) with IPCE of 40% at 500 nm and still 15% at 800 nm. Quantum efficiencies obtained with iodine/iodide electrolyte were lower and lead to an overall efficiency of 0.32%. The CdSxSey sensitized solar cells show enhanced stability compared to CdSe based systems and the use of the iodine/iodide electrolyte increases cell endurance further.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

Photovoltaic Performance of Dye-Sensitized Solar Cell (DSSC) Fabricated by Silver Nanoclusters-Decorated TiO2 Electrode via Photochemical Reduction Technique

In this investigation, Ag@TiO2 nanocomposite was prepared by deposition of silver nanoclusters onto commercial TiO2 nanoparticles (known as P25 TiO2) via photodeposition technique as clean and simple photochemical route. The synthesized Ag@TiO2 nanocomposite was utilized in the fabrication of dye-sensitized solar cell (DSSC) chiefly because, compared ...

متن کامل

A down-shifting Eu3+-doped Y2WO6/TiO2 photoelectrode for improved light harvesting in dye-sensitized solar cells

Y1.86Eu0.14WO6 phosphors were prepared using a solid-state reaction method. Their optical properties were analysed, and they was mixed with TiO2, sintered, and used as a photoelectrode (PE) in dye-sensitized solar cells (DSSCs). The as-prepared photoelectrode was characterized by photoluminescence spectroscopy, diffuse reflectance, electrochemical impedance spectroscopy (EIS) and X-ray diffract...

متن کامل

Ultra-High Speed Fabrication of TiO2 Photoanode by Flash Light for Dye-Sensitized Solar Cell.

In this work, a new way to fabricate nanoporous TiO2 photoanode by flash light is demonstrated. TiO2 nanoparticles are sintered on FTO glass by flash light irradiation at room temperature in ambient condition, which is dramatically simple, ultrahigh speed and one-shot large area fabrication process compared to a conventional high temperature (120 °C) thermal sintering process. The effect of the...

متن کامل

Preparation of CdIn2S4-CdS nanocomposite via a green route and using them in dot-sensitized solar cells for boosting efficiency

In this work In2S3 and CdS nanoparticles were prepared by a simple hydrothermal method and then annealed at 500 °C for 2 h in an Ar gas until CdIn2S4(CdIS)-CdS nanocomposites were formed. Afterwards, efficiency of the as-synthesized CdIS-CdS nanocomposite in quantum dot-sensitized solar cells (QDSSCs) was evaluated. For this purpose, the as-prepared CdIS-CdS nanocomposites were deposited on TiO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013