Learning Interestingness of Streaming Classification Rules

نویسندگان

  • Tolga Aydin
  • H. Altay Güvenir
چکیده

Inducing classification rules on domains from which information is gathered at regular periods lead the number of such classification rules to be generally so huge that selection of interesting ones among all discovered rules becomes an important task. At each period, using the newly gathered information from the domain, the new classification rules are induced. Therefore, these rules stream through time and are so called streaming classification rules. In this paper, an interactive rule interestingness-learning algorithm (IRIL) is developed to automatically label the classification rules either as “interesting” or “uninteresting” with limited user interaction. In our study, VFP (Voting Feature Projections), a feature projection based incremental classification learning algorithm, is also developed in the framework of IRIL. The concept description learned by the VFP algorithm constitutes a novel approach for interestingness analysis of streaming classification rules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Interestingness of Streaming Classification Rules as a Classification Problem

Inducing classification rules on domains from which information is gathered at regular periods lead the number of such classification rules to be generally so huge that selection of interesting ones among all discovered rules becomes an important task. At each period, using the newly gathered information from the domain, the new classification rules are induced. Therefore, these rules stream th...

متن کامل

Modeling interestingness of streaming association rules as a benefit-maximizing classification problem

0950-7051/$ see front matter 2008 Elsevier B.V. A doi:10.1016/j.knosys.2008.07.003 q The authors gratefully acknowledge the TUBITA Research Council of Turkey) for providing funds to Grants 101E044 and 105E065. * Corresponding author. E-mail address: [email protected] (T. Aydın) In a typical application of association rule learning from market basket data, a set of transactions for a fixe...

متن کامل

A Novel Hybrid Approach for Interestingness Analysis of Classification Rules

Data mining is the efficient discovery of patterns in large databases, and classification rules are perhaps the most important type of patterns in data mining applications. However, the number of such classification rules is generally very big that selection of interesting ones among all discovered rules becomes an important task. In this paper, factors related to the interestingness of a rule ...

متن کامل

Numeric Multi-Objective Rule Mining Using Simulated Annealing Algorithm

Abstract as a single objective one. Measures like support, confidence and other interestingness criteria which are used for evaluating a rule, can be thought of as different objectives of association rule mining problem. Support count is the number of records, which satisfies all the conditions that exist in the rule. This objective represents the accuracy of the rules extracted from the da...

متن کامل

Semantics-based classification of rule interestingness measures

Assessing rules with interestingness measures is the cornerstone of successful applications of association rule discovery. However, as numerous measures may be found in the literature, choosing the measures to be applied for a given application is a difficult task. In this chapter, the authors present a novel and useful classification of interestingness measures according to three criteria: the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004