On Quasiperiodic Space Tilings, Inflation, and Dehn Invariants
نویسندگان
چکیده
Abstract We introduce Dehn invariants as a useful tool in the study of the inflation of quasiperiodic space tilings. The tilings by “golden tetrahedra” are considered. We discuss how the Dehn invariants can be applied to the study of inflation properties of the six golden tetrahedra. We also use geometry of the faces of the golden tetrahedra to analyze their inflation properties. We give the inflation rules for decorated Mosseri–Sadoc tiles in the projection class of tilings T (MS). The Dehn invariants of the Mosseri–Sadoc tiles provide two eigenvectors of the inflation matrix with eigenvalues equal to τ = 1+ √ 5 2 and − 1 τ , and allow to reconstruct the inflation matrix uniquely.
منابع مشابه
On Inflation Rules for Mosseri–Sadoc Tilings
We give the inflation rules for the decorated Mosseri–Sadoc tiles in the projection class of tilings T . Dehn invariants related to the stone inflation of the Mosseri–Sadoc tiles provide eigenvectors of the inflation matrix with eigenvalues equal to τ = 1+ √ 5 2 and (−τ).
متن کاملPoint processes for decagonal quasiperiodic tilings
A general construction principle of inflation rules for decagonal quasiperiodic tilings is proposed. The prototiles are confined to be polygons with unit edges. An inflation rule for a tiling is the combination of an expansion and a division of the tiles, where the expanded tiles can be divided arbitrarily as far as the set of prototiles is maintained. A certain kind of point decoration process...
متن کاملQuasiperiodic Tilings: A Generalized Grid–Projection Method
We generalize the grid–projection method for the construction of quasiperiodic tilings. A rather general fundamental domain of the associated higher dimensional lattice is used for the construction of the acceptance region. The arbitrariness of the fundamental domain allows for a choice which obeys all the symmetries of the lattice, which is important for the construction of tilings with a give...
متن کاملQuasiperiodic Tilings Derived from Deformed Cuboctahedra
3D quasiperiodic tilings derived from deformed cuboctahedra are obtained by projection from 7D or 6D lattice space to 3D tile-space. Lattice matrices defining the projections from 7D or 6D lattice space to tileand test-space are given by introducing a deformation parameter. Two types of lattice matrices are considered, orthonormal and row-wise orthogonal, both are corresponding to deformation o...
متن کاملQuasiperiodic Tilings Derived from a Cuboctahedron —Projection from 6D Lattice Space—
A 3D quasiperiodic tiling derived from a cuboctabedron is obtained by projection from 6D lattice space to 3D tile-space, one less dimensional lattice space than the conventional one. A lattice matrix defining projections from 6D lattice space to tileand test-space is given and its geometric properties are investigated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 26 شماره
صفحات -
تاریخ انتشار 2001