Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
نویسندگان
- B. P. Abbott
- R. Abbott
- T. D. Abbott
- M. R. Abernathy
- F. Acernese
- K. Ackley
- C. Adams
- T. Adams
- P. Addesso
- R. X. Adhikari
- V. B. Adya
- C. Affeldt
- M. Agathos
- K. Agatsuma
- N. Aggarwal
- O. D. Aguiar
- A. Ain
- P. Ajith
- B. Allen
- A. Allocca
- P. A. Altin
- D. V. Amariutei
- S. B. Anderson
- W. G. Anderson
- K. Arai
- M. C. Araya
- C. C. Arceneaux
- J. S. Areeda
- N. Arnaud
- K. G. Arun
- G. Ashton
- M. Ast
- S. M. Aston
- P. Astone
- P. Aufmuth
- C. Aulbert
- S. Babak
- P. T. Baker
- F. Baldaccini
- G. Ballardin
- S. W. Ballmer
- J. C. Barayoga
- S. E. Barclay
- B. C. Barish
- D. Barker
- F. Barone
- B. Barr
- L. Barsotti
- M. Barsuglia
- D. Barta
- J. Bartlett
- I. Bartos
- R. Bassiri
- A. Basti
- J. C. Batch
- C. Baune
- V. Bavigadda
- M. Bazzan
- B. Behnke
- M. Bejger
- C. Belczynski
- A. S. Bell
- C. J. Bell
- B. K. Berger
- J. Bergman
- G. Bergmann
- C. P. L. Berry
- D. Bersanetti
- A. Bertolini
- J. Betzwieser
- S. Bhagwat
- R. Bhandare
- I. A. Bilenko
- G. Billingsley
- J. Birch
- R. Birney
- S. Biscans
- A. Bisht
- M. Bitossi
- C. Biwer
- M. A. Bizouard
- J. K. Blackburn
- C. D. Blair
- D. Blair
- R. M. Blair
- S. Bloemen
- O. Bock
- T. P. Bodiya
- M. Boer
- G. Bogaert
- C. Bogan
- A. Bohe
- P. Bojtos
- C. Bond
- F. Bondu
- R. Bonnand
- R. Bork
- V. Boschi
- S. Bose
- A. Bozzi
- C. Bradaschia
- P. R. Brady
- V. B. Braginsky
- M. Branchesi
- J. E. Brau
- T. Briant
- A. Brillet
- M. Brinkmann
- V. Brisson
- P. Brockill
- A. F. Brooks
- D. A. Brown
- D. D. Brown
- N. M. Brown
- C. C. Buchanan
- A. Buikema
- T. Bulik
- H. J. Bulten
- A. Buonanno
- D. Buskulic
- C. Buy
- R. L. Byer
- L. Cadonati
- G. Cagnoli
- C. Cahillane
- J. Calderón Bustillo
- T. Callister
- E. Calloni
- J. B. Camp
- K. C. Cannon
- J. Cao
- C. D. Capano
- E. Capocasa
- F. Carbognani
- S. Caride
- J. Casanueva Diaz
- C. Casentini
- S. Caudill
- M. Cavaglià
- F. Cavalier
- R. Cavalieri
- G. Cella
- C. Cepeda
- L. Cerboni Baiardi
- G. Cerretani
- E. Cesarini
- R. Chakraborty
- T. Chalermsongsak
- S. J. Chamberlin
- M. Chan
- S. Chao
- P. Charlton
- E. Chassande-Mottin
- H. Y. Chen
- Y. Chen
- C. Cheng
- A. Chincarini
- A. Chiummo
- H. S. Cho
- M. Cho
- J. H. Chow
- N. Christensen
- Q. Chu
- S. Chua
- S. Chung
- G. Ciani
- F. Clara
- J. A. Clark
- F. Cleva
- E. Coccia
- P.-F. Cohadon
- A. Colla
- C. G. Collette
- M. Constancio
- A. Conte
- L. Conti
- D. Cook
- T. R. Corbitt
- N. Cornish
- A. Corsi
- S. Cortese
- C. A. Costa
- M. W. Coughlin
- S. B. Coughlin
- J.-P. Coulon
- S. T. Countryman
- P. Couvares
- D. M. Coward
- M. J. Cowart
- D. C. Coyne
- R. Coyne
- K. Craig
- J. D. E. Creighton
- J. Cripe
- S. G. Crowder
- A. Cumming
- L. Cunningham
- E. Cuoco
- T. Dal Canton
- S. L. Danilishin
- S. D’Antonio
- K. Danzmann
- N. S. Darman
- V. Dattilo
- I. Dave
- H. P. Daveloza
- M. Davier
- G. S. Davies
- E. J. Daw
- R. Day
- D. DeBra
- G. Debreczeni
- J. Degallaix
- M. De Laurentis
- S. Deléglise
- W. Del Pozzo
- T. Denker
- T. Dent
- H. Dereli
- V. Dergachev
- R. DeRosa
- R. De Rosa
- R. DeSalvo
- S. Dhurandhar
- M. C. Díaz
- L. Di Fiore
- M. Di Giovanni
- A. Di Lieto
- I. Di Palma
- A. Di Virgilio
- G. Dojcinoski
- V. Dolique
- F. Donovan
- K. L. Dooley
- S. Doravari
- R. Douglas
- T. P. Downes
- M. Drago
- R. W. P. Drever
- J. C. Driggers
- Z. Du
- M. Ducrot
- S. E. Dwyer
- T. B. Edo
- M. C. Edwards
- A. Effler
- H.-B. Eggenstein
- P. Ehrens
- J. M. Eichholz
- S. S. Eikenberry
- W. Engels
- R. C. Essick
- T. Etzel
- M. Evans
- T. M. Evans
- R. Everett
- M. Factourovich
- V. Fafone
- H. Fair
- S. Fairhurst
- X. Fan
- Q. Fang
- S. Farinon
- B. Farr
- W. M. Farr
- M. Favata
- M. Fays
- H. Fehrmann
- M. M. Fejer
- I. Ferrante
- E. C. Ferreira
- F. Ferrini
- F. Fidecaro
- I. Fiori
- R. P. Fisher
- R. Flaminio
- M. Fletcher
- J.-D. Fournier
- S. Franco
- S. Frasca
- F. Frasconi
- Z. Frei
- A. Freise
- R. Frey
- T. T. Fricke
- P. Fritschel
- V. V. Frolov
- P. Fulda
- M. Fyffe
- H. A. G. Gabbard
- J. R. Gair
- L. Gammaitoni
- S. G. Gaonkar
- F. Garufi
- A. Gatto
- G. Gaur
- N. Gehrels
- G. Gemme
- B. Gendre
- E. Genin
- A. Gennai
- J. George
- L. Gergely
- V. Germain
- A. Ghosh
- S. Ghosh
- J. A. Giaime
- K. D. Giardina
- A. Giazotto
- K. Gill
- A. Glaefke
- E. Goetz
- R. Goetz
- L. Gondan
- G. González
- J. M. Gonzalez Castro
- A. Gopakumar
- N. A. Gordon
- M. L. Gorodetsky
- S. E. Gossan
- M. Gosselin
- R. Gouaty
- C. Graef
- P. B. Graff
- M. Granata
- A. Grant
- S. Gras
- C. Gray
- G. Greco
- A. C. Green
- P. Groot
- H. Grote
- S. Grunewald
- G. M. Guidi
- X. Guo
- A. Gupta
- M. K. Gupta
- K. E. Gushwa
- E. K. Gustafson
- R. Gustafson
- J. J. Hacker
- B. R. Hall
- E. D. Hall
- G. Hammond
- M. Haney
- M. M. Hanke
- J. Hanks
- C. Hanna
- M. D. Hannam
- J. Hanson
- T. Hardwick
- J. Harms
- G. M. Harry
- I. W. Harry
- M. J. Hart
- M. T. Hartman
- C.-J. Haster
- K. Haughian
- A. Heidmann
- M. C. Heintze
- H. Heitmann
- P. Hello
- G. Hemming
- M. Hendry
- I. S. Heng
- J. Hennig
- A. W. Heptonstall
- M. Heurs
- S. Hild
- D. Hoak
- K. A. Hodge
- D. Hofman
- S. E. Hollitt
- K. Holt
- D. E. Holz
- P. Hopkins
- D. J. Hosken
- J. Hough
- E. A. Houston
- E. J. Howell
- Y. M. Hu
- S. Huang
- E. A. Huerta
- D. Huet
- B. Hughey
- S. Husa
- S. H. Huttner
- T. Huynh-Dinh
- A. Idrisy
- N. Indik
- D. R. Ingram
- R. Inta
- H. N. Isa
- J.-M. Isac
- M. Isi
- G. Islas
- T. Isogai
- B. R. Iyer
- K. Izumi
- T. Jacqmin
- H. Jang
- K. Jani
- P. Jaranowski
- S. Jawahar
- F. Jiménez-Forteza
- W. W. Johnson
- D. I. Jones
- R. Jones
- R. J. G. Jonker
- L. Ju
- K. Haris
- C. V. Kalaghatgi
- V. Kalogera
- S. Kandhasamy
- G. Kang
- J. B. Kanner
- S. Karki
- M. Kasprzack
- E. Katsavounidis
- W. Katzman
- S. Kaufer
- T. Kaur
- K. Kawabe
- F. Kawazoe
- F. Kéfélian
- M. S. Kehl
- D. Keitel
- D. B. Kelley
- W. Kells
- R. Kennedy
- J. S. Key
- A. Khalaidovski
- F. Y. Khalili
- S. Khan
- Z. Khan
- E. A. Khazanov
- N. Kijbunchoo
- C. Kim
- J. Kim
- K. Kim
- N. Kim
- Y.-M. Kim
- E. J. King
- P. J. King
- D. L. Kinzel
- J. S. Kissel
- L. Kleybolte
- S. Klimenko
- S. M. Koehlenbeck
- K. Kokeyama
- S. Koley
- V. Kondrashov
- A. Kontos
- M. Korobko
- W. Z. Korth
- I. Kowalska
- D. B. Kozak
- V. Kringel
- B. Krishnan
- A. Królak
- C. Krueger
- G. Kuehn
- P. Kumar
- L. Kuo
- A. Kutynia
- B. D. Lackey
- M. Landry
- J. Lange
- B. Lantz
- P. D. Lasky
- A. Lazzarini
- C. Lazzaro
- P. Leaci
- S. Leavey
- E. Lebigot
- C. H. Lee
- H. K. Lee
- H. M. Lee
- K. Lee
- A. Lenon
- M. Leonardi
- J. R. Leong
- N. Leroy
- N. Letendre
- Y. Levin
- B. M. Levine
- T. G. F. Li
- A. Libson
- T. B. Littenberg
- N. A. Lockerbie
- J. Logue
- A. L. Lombardi
- J. E. Lord
- M. Lorenzini
- V. Loriette
- M. Lormand
- G. Losurdo
- J. D. Lough
- H. Lück
- A. P. Lundgren
چکیده
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
منابع مشابه
LOCALIZATION OF SHORT DURATION GRAVITATIONAL- WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS Citation
The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitationalwave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as un...
متن کاملRadio Follow-up of Gravitational-wave Triggers during Advanced Ligo O1
We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational wave triggers were followed up during the ≈ 4 months of O1, from September 2015 to January 2016. Two of these triggers, GW150914 and GW151226, are binary black h...
متن کاملClassification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data
The data taken by the advanced LIGO and Virgo gravitational-wave detectors contains short duration noise transients that limit the significance of astrophysical detections and reduce the duty cycle of the instruments. As the advanced detectors are reaching sensitivity levels that allow for multiple detections of astrophysical gravitational-wave sources it is crucial to achieve a fast and accura...
متن کاملCorrelated magnetic noise in global networks of gravitational-wave detectors: Observations and implications
One of the most ambitious goals of gravitational-wave astronomy is to observe the stochastic gravitational-wave background. Correlated noise in two or more detectors can introduce a systematic error, which limits the sensitivity of stochastic searches. We report on measurements of correlated magnetic noise from Schumann resonances at the widely separated LIGO and Virgo detectors. We investigate...
متن کاملUsed percentage veto for LIGO and virgo binary inspiral searches
A challenge for ground-based gravitational wave detectors such as LIGO and Virgo is to understand the origin of non-astrophysical transients that contribute to the background noise, obscuring real astrophysically produced signals. To help this effort, there are a number of environmental and instrumental sensors around the site, recording data in “channels”. We developed a method called the used...
متن کاملProspects for the Detection of Electromagnetic Counterparts to Gravitational Wave Events
Various models for electromagnetic emissions correlated with the gravitational wave signals expected to be detectable by the current and planned gravitational wave detectors are studied. The position error on the location of a gravitational wave source is estimated, and is used to show that it could be possible to observe the electromagnetic counterparts to neutron star-neutron star or neutron ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2016