Effect of hepatic denervation on the counterregulatory response to insulin-induced hypoglycemia in the dog.
نویسندگان
چکیده
Our aim was to determine whether complete hepatic denervation would affect the hormonal response to insulin-induced hypoglycemia in dogs. Two weeks before study, dogs underwent either hepatic denervation (DN) or sham denervation (CONT). In addition, all dogs had hollow steel coils placed around their vagus nerves. The CONT dogs were used for a single study in which their coils were perfused with 37 degrees C ethanol. The DN dogs were used for two studies in a random manner, one in which their coils were perfused with -20 degrees C ethanol (DN + COOL) and one in which they were perfused with 37 degrees C ethanol (DN). Insulin was infused to create hypoglycemia (51 +/- 3 mg/dl). In response to hypoglycemia in CONT, glucagon, cortisol, epinephrine, norepinephrine, pancreatic polypeptide, glycerol, and hepatic glucose production increased significantly. DN alone had no inhibitory effect on any hormonal or metabolic counterregulatory response to hypoglycemia. Likewise, DN in combination with vagal cooling also had no inhibitory effect on any counterregulatory response except to reduce the arterial plasma pancreatic polypeptide response. These data suggest that afferent signaling from the liver is not required for the normal counterregulatory response to insulin-induced hypoglycemia.
منابع مشابه
Impaired hepatic counterregulatory response to insulin-induced hypoglycemia in hepatic denervated pigs
Objective The liver reacts to hypoglycemia by increasing its glucose output. This response is assumed to depend both on glucose sensing at the liver and the brain, as well as efferent impulses from the brain to the liver. We tested the importance of this signaling pathway by studying the hepatic response to insulin-induced hypoglycemia in hepatic complete denervated pigs. Materials/methods Tw...
متن کاملHepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis.
Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose...
متن کاملVentromedial hypothalamic glucokinase is an important mediator of the counterregulatory response to insulin-induced hypoglycemia.
OBJECTIVE The counterregulatory response to insulin-induced hypoglycemia is mediated by the ventromedial hypothalamus (VMH), which contains specialized glucosensing neurons, many of which use glucokinase (GK) as the rate-limiting step in glucose's regulation of neuronal activity. Since conditions associated with increased VMH GK expression are associated with a blunted counterregulatory respons...
متن کاملSensing hypoglycemia: the ventromedial hypothalamus.
Hypoglycemia as a limiting factor in the treatment of diabetes mellitus with insulin was apparent even before the hormone was administered to patients. A passage in a biography of Banting notes: ‘The pace picked up as Banting and Best began adjusting extract . . . On December 2, 1921 . . . the injections threw the longevity dog, number 27, into repeated convulsions. . . . It finally died, kille...
متن کاملEffect of vagal cooling on the counterregulatory response to hypoglycemia induced by a low dose of insulin in the conscious dog.
We previously demonstrated, using a nerve-cooling technique, that the vagus nerves are not essential for the counterregulatory response to hypoglycemia caused by high levels of insulin. Because high insulin levels per se augment the central nervous system response to hypoglycemia, the question arises whether afferent nerve fibers traveling along the vagus nerves would play a role in the defense...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 279 6 شماره
صفحات -
تاریخ انتشار 2000