Olfactory inputs activate the medial entorhinal cortex via the hippocampus.
نویسندگان
چکیده
The lateral and medial regions of the entorhinal cortex differ substantially in terms of connectivity and pattern of activation. With regard to olfactory input, a detailed and extensive physiological map of the olfactory projection to the entorhinal cortex is missing, even if anatomic studies suggest that the olfactory afferents are confined to the lateral and rostral entorhinal region. We studied the contribution of the medial and lateral entorhinal areas to olfactory processing by analyzing the responses induced by lateral olfactory tract stimulation in different entorhinal subfields of the in vitro isolated guinea pig brain. The pattern of synaptic activation of the medial and lateral entorhinal regions was reconstructed either by performing simultaneous multisite recordings or by applying current source density analysis on field potential laminar profiles obtained with 16-channel silicon probes. Current source density analysis demonstrated the existence of a direct monosynaptic olfactory input into the superficial 300 microm of the most rostral part of the lateral entorhinal cortex exclusively, whereas disynaptic sinks mediated by associative fibers arising from the piriform cortex were observed at 100-350 microm depth in the entire lateral aspect of the cortex. No local field responses were recorded in the medial entorhinal region unless a large population spike was generated in the hippocampus (dentate gyrus and CA1 region) by a stimulus 3-5x the intensity necessary to obtain a maximal monosynaptic response in the piriform cortex. In these conditions, a late sink was recorded at a depth of 600-1000 microm in the medial entorhinal area (layers III-V) 10.6 +/- 0.9 (SD) msec after a population spike was simultaneously recorded in CA1. Diffuse activation of the medial entorhinal region was also obtained by repetitive low-intensity stimulation of the lateral olfactory tract at 2-8 Hz. Higher or lower stimulation frequencies did not induce hippocampal-medial entorhinal cortex activation. These results suggest that the medial and the lateral entorhinal regions have substantially different roles in processing olfactory sensory inputs.
منابع مشابه
Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis.
Converging inputs to the entorhinal cortex from the piriform cortex and medial septum: facilitation and current source density analysis. J. Neurophysiol. 78: 2602-2615, 1997. The entorhinal cortex receives sensory inputs from the piriform cortex and modulatory inputs from the medial septum. To examine short-term synaptic facilitation effects in these pathways, current source density (CSD) analy...
متن کاملOlfactory and cortical projections to bulbar and hippocampal adult-born neurons
New neurons are continually generated in the subependymal layer of the lateral ventricles and the subgranular zone of dentate gyrus during adulthood. In the subventricular zone, neuroblasts migrate a long distance to the olfactory bulb where they differentiate into granule or periglomerular interneurons. In the hippocampus, neuroblasts migrate a short distance from the subgranular zone to the g...
متن کاملEarly Cortical Changes in Gamma Oscillations in Alzheimer’s Disease
The entorhinal cortices in the temporal lobe of the brain are key structures relaying memory related information between the neocortex and the hippocampus. The medial entorhinal cortex (MEC) routes spatial information, whereas the lateral entorhinal cortex (LEC) routes predominantly olfactory information to the hippocampus. Gamma oscillations are known to coordinate information transfer between...
متن کاملHippocampus-mediated activation of superficial and deep layer neurons in the medial entorhinal cortex of the isolated guinea pig brain.
The entorhinal cortex (EC) is regarded as the structure that regulates information flow to and from the hippocampus. It is commonly assumed that superficial and deep EC neurons project to and receive from the hippocampal formation, respectively. Anatomical evidences suggest that both the hippocampal output and deep EC neurons also project to superficial EC layers. To functionally characterize t...
متن کاملComplementary Modular Microcircuits of the Rat Medial Entorhinal Cortex
The parahippocampal region is organized into different areas, with the medial entorhinal cortex (MEC), presubiculum and parasubiculum prominent in spatial memory. Here, we also describe a region at the extremity of the MEC and bordering the subicular complex, the medial-most part of the entorhinal cortex. While the subdivisions of hippocampus proper form more or less continuous cell sheets, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2000