Asymptotic Properties of Back tting Estimators

نویسنده

  • Jean D. Opsomer
چکیده

When additive models with more than two covariates are tted with the backktting algorithm proposed by Buja et al. 2], the lack of explicit expressions for the estimators makes study of their theoretical properties cumbersome. Recursion provides a convenient way to extend existing theoretical results for bivariate additive models to models of arbitrary dimension. In the case of local polynomial regression smoothers, recursive asymptotic bias and variance expressions for the backktting estimators are derived. The estimators are shown to achieve the same rate of convergence as those of univariate local polynomial regression. In the case of independence between the covariates, non-recursive bias and variance expressions, as well as the asymptotically optimal values for the bandwidth parameters, are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fitting a Bivariate Additive Model by LocalPolynomial Regression

While the additive model is a popular nonparametric regression method, many of its theoretical properties are not well understood, especially when the back tting algorithm is used for computation of the the estimators. This article explores those properties when the additive model is tted by local polynomial regression. Su cient conditions guaranteeing the asymptotic existence of unique estimat...

متن کامل

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Limiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model

The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...

متن کامل

Asymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria

‎We extend the method of adaptive two-stage sequential sampling to‎‎include designs where there is more than one criteria is used in‎‎deciding on the allocation of additional sampling effort‎. ‎These‎‎criteria‎, ‎or conditions‎, ‎can be a measure of the target‎‎population‎, ‎or a measure of some related population‎. ‎We develop‎‎Murthy estimator for the design that is unbiased estimators for‎‎t...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998