Single Trial Predictors for Gating Motor-Imagery Brain-Computer Interfaces Based on Sensorimotor Rhythm and Visual Evoked Potentials

نویسندگان

  • Andrew Geronimo
  • Mst Kamrunnahar
  • Steven J. Schiff
چکیده

For brain-computer interfaces (BCIs) that utilize visual cues to direct the user, the neural signals extracted by the computer are representative of ongoing processes, visual evoked responses, and voluntary modulation. We proposed to use three brain signatures for predicting success on a single trial of a BCI task. The first two features, the amplitude and phase of the pre-trial mu amplitude, were chosen as a correlate for cortical excitability. The remaining feature, related to the visually evoked response to the cue, served as a possible measure of fixation and attention to the task. Of these three features, mu rhythm amplitude over the central electrodes at the time of cue presentation and to a lesser extent the single trial visual evoked response were correlated with the success on the subsequent imagery task. Despite the potential for gating trials using these features, an offline gating simulation was limited in its ability to produce an increase in device throughput. This discrepancy highlights a distinction between the identification of predictive features, and the use of this knowledge in an online BCI. Using such a system, we cannot assume that the user will respond similarly when faced with a scenario where feedback is altered by trials that are gated on a regular basis. The results of this study suggest the possibility of using individualized, pre-task neural signatures for personalized, and asynchronous (self-paced) BCI applications, although these effects need to be quantified in a real-time adaptive scenario in a future study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex.

There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery is believed to represent increased se...

متن کامل

Practical Designs of Brain–Computer Interfaces Based on the Modulation of EEG Rhythms

A brain–computer interface (BCI) is a communication channel which does not depend on the brain’s normal output pathways of peripheral nerves and muscles [1–3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low...

متن کامل

Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.

The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI devi...

متن کامل

Evaluation of Ssvep as Passive Feedback for Improving the Performance of Brain Machine Interfaces

Research in brain-computer interfaces have focused primarily on motor imagery tasks such as those involving movement of a cursor or other objects on a computer screen. In such applications, it is important to detect when the user is interested in moving an object and when the user is not active in this task. This paper evaluates the steady state visual evoked potential (SSVEP) as a feedback mec...

متن کامل

Impact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis

The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016