Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury

نویسندگان

  • Dongwon Lee
  • Seunggyu Park
  • Soochan Bae
  • Dahee Jeong
  • Minhyung Park
  • Changsun Kang
  • Wooyoung Yoo
  • Mohammed A. Samad
  • Qingen Ke
  • Gilson Khang
  • Peter M. Kang
چکیده

Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen Peroxide‐Responsive Nanoparticle Reduces Myocardial Ischemia/Reperfusion Injury

BACKGROUND During myocardial ischemia/reperfusion (I/R), a large amount of reactive oxygen species (ROS) is produced. In particular, overproduction of hydrogen peroxide (H2O2) is considered to be a main cause of I/R-mediated tissue damage. We generated novel H2O2-responsive antioxidant polymer nanoparticles (PVAX and HPOX) that are able to target the site of ROS overproduction and attenuate the...

متن کامل

Potential therapeutic effect of pomegranate seed oil on ovarian ischemia/reperfusion injury in rats

Objective(s): The aim of this study is to determine the therapeutic effects of pomegranate seed oil, which is a powerful antioxidant and anti-inflammatory agent, on ovarian-ischemia and reperfusion injury in rats.Materials and Methods: Fifty-six  female albino Wistar rats were divided into 7 equal groups. Group 1; Sham Operation, Group 2; Ischemia, Group 3; Ischemia + Reperfusion, Group 4; Isch...

متن کامل

H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents

The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) ...

متن کامل

Renoprotective effect of crocin following liver ischemia/ reperfusion injury in Wistar rats

Objective(s): The objectives of the current study were to evaluate the effects of hepatic ‎ischemia/reperfusion (IR) injury on the activity of antioxidant enzymes, biochemical factors, and ‎histopathological changes in rat kidney, and to investigate the effect of crocin on IR-‎related changes. Materials and Methods: Thirty-two male Wistar rats were randomly allocated into four groups (n=8). The...

متن کامل

Protective effect of soluble eggshell membrane protein hydrolysate on cardiac ischemia/reperfusion injury

BACKGROUND Soluble eggshell membrane protein (SEP) has been proved to hold the antioxidant activity. The functional role of SEP on cardioprotection was investigated in vivo and in vitro. METHODS Rats and cardiomyocytes were pretreated with SP2, a hydrolysate attained from SEP, and then subjected to ischemia/reperfusion (I/R) or hypoxia/reoxygenation (H/R) and hydrogen peroxide, respectively. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015