Flux identification for 1-d scalar conservation laws
نویسندگان
چکیده
We consider the problem of flux identification for 1-d scalar conservation laws formulating it as an optimal control problem. We introduce a new optimization strategy to compute numerical approximations of minimizing fluxes. We first prove the existence of minimizers. We also prove the convergence of discrete minima obtained by means of monotone numerical approximation schemes, by a Γ-convergence argument. Then we address the problem of developing efficient descent algorithms. We first consider and compare the existing two possible approaches. The first one, the so-called discrete approach, based on a direct computation of gradients in the discrete problem and the so-called continuous one, where the discrete descent direction is obtained as a discrete copy of the continuous one. When optimal solutions have shock discontinuities, both approaches produce highly oscillating minimizing sequences and the effective descent rate is very weak. As a remedy we adapt the method of alternating descent directions that uses the recent developments of generalized tangent vectors and the linearization around discontinuous solutions, introduced by the authors, in collaboration with F. Palacios, in the case where the control is the initial datum. This method distinguishes descent directions that move the shock and those that perturb the profile of the solution away from it. As we shall see, a suitable alternating combination of these two classes of descent directions allows building more efficient and fast descent algorithms.
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملGodunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space
Abstract. Scalar conservation laws with a flux function discontinuous in space are approximated using a Godunov-type method for which a convergence theorem is proved. The case where the flux functions at the interface intersect is emphasized. A very simple formula is given for the interface flux. A numerical comparison between the Godunov numerical flux and the upstream mobility flux is present...
متن کاملNumerical gradient methods for flux identification in a system of conservation laws
The identification of the flux for a system of conservation laws is studied from a numerical point of view, on the specific example of chromatography. Different strategies to compute the exact gradient of the discretized optimization problem are developed and compared. Numerical evidence of the convergence of the method is also given in the scalar and binary case. Finally a ternary mixture with...
متن کاملSolving 1D Conservation Laws Using Pontryagin's Minimum Principle
This paper discusses a connection between scalar convex conservation laws and Pontryagin’s minimum principle. For flux functions for which an associated optimal control problem can be found, a minimum value solution of the conservation law is proposed. For scalar space-independent convex conservation laws such a control problem exists and the minimum value solution of the conservation law is eq...
متن کاملA BGK approximation to scalar conservation laws with discontinuous flux
We study the BGK approximation to first-order scalar conservation laws with a flux which is discontinuous in the space variable. We show that the Cauchy Problem for the BGK approximation is well-posed and that, as the relaxation parameter tends to 0, it converges to the (entropy) solution of the limit problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010