A Globally Convergent Linearly Constrained Lagrangian Method for Nonlinear Optimization

نویسندگان

  • Michael P. Friedlander
  • Michael A. Saunders
چکیده

For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods sequentially minimize a Lagrangian function subject to linearized constraints. These methods converge rapidly near a solution but may not be reliable from arbitrary starting points. The well known example MINOS has proven effective on many large problems. Its success motivates us to propose a globally convergent variant. Our stabilized LCL method possesses two important properties: the subproblems are always feasible, and they may be solved inexactly. These features are present in MINOS only as heuristics. The new algorithm has been implemented in Matlab, with the option to use either the MINOS or SNOPT Fortran codes to solve the linearly constrained subproblems. Only first derivatives are required. We present numerical results on a nonlinear subset from the COPS, CUTE, and HS test-problem sets, which include many large examples. The results demonstrate the robustness and efficiency of the stabilized LCL procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization

A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization Paul Armand & Riadh Omheni To cite this article: Paul Armand & Riadh Omheni (2015): A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization, Optimization Methods and Software, DOI: 10.1080/10556788.2015.1025401 ...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds

We give a pattern search method for nonlinearly constrained optimization that is an adaption of a bound constrained augmented Lagrangian method first proposed by Conn, Gould, and Toint [SIAM J. Numer. Anal., 28 (1991), pp. 545–572]. In the pattern search adaptation, we solve the bound constrained subproblem approximately using a pattern search method. The stopping criterion proposed by Conn, Go...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Exact Penalty Methods

Exact penalty methods for the solution of constrained optimization problems are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. In the rst part of this paper we recall some deenitions concerning exactness properties of penalty functions, of barrier functions, of augmented Lagrangian functions, and discuss under which as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005