Varying-energy CT imaging method based on EM-TV

ثبت نشده
چکیده

For complicated structural components with wide x-ray attenuation ranges, conventional fixed-energy computed tomography (CT) imaging cannot obtain all the structural information. This limitation results in a shortage of CT information because the effective thickness of the components along the direction of x-ray penetration exceeds the limit of the dynamic range of the x-ray imaging system. To address this problem, a varying-energy x-ray CT imaging method is proposed. In this new method, the tube voltage is adjusted several times with the fixed lesser interval. Next, the fusion of grey consistency and logarithm demodulation are applied to obtain full and lower noise projection with a high dynamic range (HDR). In addition, for the noise suppression problem of the analytical method, EM-TV (expectation maximization-total Jvariation) iteration reconstruction is used. In the process of iteration, the reconstruction result obtained at one x-ray energy is used as the initial condition of the next iteration. An accompanying experiment demonstrates that this EM-TV reconstruction can also extend the dynamic range of x-ray imaging systems and provide a higher reconstruction quality relative to the fusion reconstruction method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EM+TV Based Reconstruction for Cone-Beam CT with Reduced Radiation

Computerized tomography (CT) plays a critical role in modern medicine. However, the radiation associated with CT is significant. Methods that can enable CT imaging with less radiation exposure but without sacrificing image quality are therefore extremely important. This paper introduces a novel method for enabling image reconstruction at lower radiation exposure levels with convergence analysis...

متن کامل

EM+TV for Reconstruction of Cone-beam CT with Curved Detectors using GPU

Computerized tomography (CT) plays a critical role in the practice of modern medicine. However, the radiation associated with CT is significant. Methods that can enable CT imaging at reduced radiation exposure without sacrificing image quality are therefore extremely important. This paper introduces a novel method for enabling improved reconstruction at lower radiation exposure levels. The meth...

متن کامل

Expectation Maximization and Total Variation Based Model for Computed Tomography Reconstruction from Undersampled Data

Computerized tomography (CT) plays an important role in medical imaging, especially for diagnosis and therapy. However, higher radiation dose from CT will result in increasing of radiation exposure in the population. Therefore, the reduction of radiation from CT is an essential issue. Expectation maximization (EM) is an iterative method used for CT image reconstruction that maximizes the likeli...

متن کامل

Generating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method

Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...

متن کامل

Optimization of Imaging Parameters in Micro-CT Scanner Based On Signal-To-Noise Ratio for the Analysis of Urinary Stone Composition

Introduction: Micro-CT scanner with a resolution of about 5 micrometers is one of the modalities used to create three-dimensional/two-dimensional images of urinary stones. This study aimed to optimize imaging parameters in micro-computed tomography (CT) scanner based on the signal-to-noise ratio (SNR) of urinary stones for the analysis of stone composition. <stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016