The Hypergraphic Tutte/Nash-Williams Theorem via Integer Decomposition, Total Dual Laminarity, and Power Matroids

نویسنده

  • David Pritchard
چکیده

We reprove the hypergraphic generalization of the Tutte/Nash-Williams theorem, which gives sufficient conditions for a hypergraph to contain k disjoint connected hypergraphs. First we observe the theorem is equivalent to the natural LP relaxation having the integer decomposition property. Then we give a new proof of this property using LP uncrossing methods. We discover that “total dual laminarity” precisely characterizes g-polymatroids, and we note that hypergraphic matroids can be viewed as a special case of “power matroids.”

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Transversal Matroids

1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....

متن کامل

1 99 7 a Convolution Formula for the Tutte Polynomial

Let M be a finite matroid with rank function r. We will write A ⊆ M when we mean that A is a subset of the ground set of M , and write M | A and M/A for the matroids obtained by restricting M to A, and contracting M on A respectively. Let M * denote the dual matroid to M. (See [1] for definitions). The main theorem is Theorem 1. The Tutte polynomial T M (x, y) satisfies (1) T M (x, y) = A⊆M T M...

متن کامل

Reinforcing a Matroid to Have k Disjoint Bases

Let ( ) M  denote the maximum number of disjoint bases in a matroid M . For a connected graph G , let ( ) = ( ( )) G M G   , where ( ) M G is the cycle matroid of G . The well-known spanning tree packing theorem of Nash-Williams and Tutte characterizes graphs G with ( ) G k   . Edmonds generalizes this theorem to matroids. In [1] and [2], for a matroid M with ( ) M k   , elements ( ) e E...

متن کامل

A Convolution Formula for the Tutte Polynomial

Let M be a finite matroid with rank function r. We will write A M when we mean that A is a subset of the ground set of M, and write M|A and M A for the matroids obtained by restricting M to A and contracting M on A respectively. Let M* denote the dual matroid to M. (See [1] for definitions). The main theorem is Theorem 1. The Tutte polynomial TM(x, y) satisfies TM(x, y)= : A M TM|A(0, y) TM A(x...

متن کامل

A New Proof for a Result of Kingan and Lemos'

Williams, Jesse T. M.S., Department of Mathematics and Statistics, Wright State University, 2014. A New Proof for a Result of Kingan and Lemos. The prism graph is the planar dual of K5\e. Kingan and Lemos [4] proved a decomposition theorem for the class of binary matroids with no prism minor. In this paper, we present a different proof using fundamental graphs and blocking sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010