Staphylococcus aureus Manganese Transport Protein C Is a Highly Conserved Cell Surface Protein That Elicits Protective Immunity Against S. aureus and Staphylococcus epidermidis

نویسندگان

  • Annaliesa S. Anderson
  • Ingrid L. Scully
  • Yekaterina Timofeyeva
  • Ellen Murphy
  • Lisa K. McNeil
  • Terri Mininni
  • Lorna Nuñez
  • Marjolaine Carriere
  • Christine Singer
  • Deborah A. Dilts
  • Kathrin U. Jansen
چکیده

Staphylococcus aureus and other staphylococci cause severe human disease, and there are currently no vaccines available. We evaluated whether manganese transport protein C (MntC), which is conserved across the staphylococcal species group, could confer protection against S. aureus and Staphylococcus epidermidis. In vivo analysis of S. aureus MntC expression revealed that expression occurs very early during the infectious cycle. Active immunization with MntC was effective at reducing the bacterial load associated with S. aureus and S. epidermidis infection in an acute murine bacteremia model. Anti-MntC monoclonal antibodies have been identified that can bind S. aureus and S. epidermidis cells and are protective in an infant rat passive protection model and induce neutrophil respiratory burst activity. This is the first description of a protein that has the potential to provide protection across the staphylococcal species group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربری پروتیین‌های جدید در ساخت واکسن استافیلوکوکوس اورئوس

Background: Staphylococcus aureus and Staphylococcus epidermidis are major human pathogens of increasing importance due to the spread of antibiotic resistance. Novel potential targets for therapeutic antibodies are products of staphylococcal genes expressed during human infection. Previously, the secreted and surface-exposed proteins among seroreactive antigens have been discovered. Furthermore...

متن کامل

A novel peptide screened by phage display can mimic TRAP antigen epitope against Staphylococcus aureus infections.

Staphylococcus aureus is a major human pathogen. Pathogenic effects are largely due to production of bacterial toxins, whose synthesis is controlled by an mRNA molecule termed RNAIII. The S. aureus protein called RAP (RNAIII-activating protein) is secreted and activates RNAIII production by inducing the phosphorylation of its target protein TRAP (target of RAP). Antibodies to TRAP have been sho...

متن کامل

Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter.

Our previous studies identified two iron-regulated cytoplasmic membrane proteins of 32 and 36 kDa expressed by both Staphylococcus epidermidis and Staphylococcus aureus. In this study we show by Triton X-114 phase partitioning and tritiated palmitic acid labelling that these proteins are lipoproteins which are anchored into the cytoplasmic membrane by their lipid-modified N termini. In common w...

متن کامل

Immunisation With Immunodominant Linear B Cell Epitopes Vaccine of Manganese Transport Protein C Confers Protection against Staphylococcus aureus Infection

Vaccination strategies for Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA) infections have attracted much research attention. Recent efforts have been made to select manganese transport protein C, or manganese binding surface lipoprotein C (MntC), which is a metal ion associated with pathogen nutrition uptake, as potential candidates for an S. aureus vaccine. Although...

متن کامل

Identification of a protective B-cell epitope of the Staphylococcus aureus GapC protein by screening a phage-displayed random peptide library

The impact of epidemic Staphylococcus aureus (S. aureus) on public health is increasing. Because of the abuse of antibiotics, the antibiotic resistance of S. aureus is increasing. Thus, there is an urgent need to develop new immunotherapies and immunoprophylaxes. Previous studies showed that the GapC protein of S. aureus, which is a surface protein with high glyceraldehyde 3-phosphate dehydroge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 205  شماره 

صفحات  -

تاریخ انتشار 2012