Quantile regression models with multivariate failure time data.
نویسندگان
چکیده
As an alternative to the mean regression model, the quantile regression model has been studied extensively with independent failure time data. However, due to natural or artificial clustering, it is common to encounter multivariate failure time data in biomedical research where the intracluster correlation needs to be accounted for appropriately. For right-censored correlated survival data, we investigate the quantile regression model and adapt an estimating equation approach for parameter estimation under the working independence assumption, as well as a weighted version for enhancing the efficiency. We show that the parameter estimates are consistent and asymptotically follow normal distributions. The variance estimation using asymptotic approximation involves nonparametric functional density estimation. We employ the bootstrap and perturbation resampling methods for the estimation of the variance-covariance matrix. We examine the proposed method for finite sample sizes through simulation studies, and illustrate it with data from a clinical trial on otitis media.
منابع مشابه
Mini-Workshop: Frontiers in Quantile Regression
Quantiles play an essential role in modern statistics, as emphasized by the fundamental work of Parzen (1978) and Tukey (1977). Quantile regression was introduced by Koenker and Bassett (1978) as a complement to least squares estimation (LSE) or maximum likelihood estimation (MLE) and leads to far-reaching extensions of ”classical” regression analysis by estimating families of conditional quant...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملDependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Empirical Evidence from Greece
The main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. We examine the dependence between PD and RR by theoretical approach. For the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. These methods allow to determinate...
متن کاملModel-based approaches to nonparametric Bayesian quantile regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by mean regression. We develop two distinct Bayesian approaches to fully nonparametric model-based quantile regression. The first appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrics
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2005